diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp index a6d2dc47f6b..aba8f693cf8 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp @@ -30,6 +30,8 @@ #include "gc/shenandoah/shenandoahFreeSet.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahGeneration.hpp" +#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" +#include "gc/shenandoah/shenandoahOldGeneration.hpp" #include "gc/shenandoah/shenandoahYoungGeneration.hpp" #include "logging/log.hpp" #include "logging/logTag.hpp" @@ -56,9 +58,6 @@ const double ShenandoahAdaptiveHeuristics::HIGHEST_EXPECTED_AVAILABLE_AT_END = 0 const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25% const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9% -// TODO: Provide comment here or remove if not used -const uint ShenandoahAdaptiveHeuristics::MINIMUM_RESIZE_INTERVAL = 10; - ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics(ShenandoahGeneration* generation) : ShenandoahHeuristics(generation), _margin_of_error_sd(ShenandoahAdaptiveInitialConfidence), @@ -110,10 +109,27 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false); if (is_generational) { + for (size_t idx = 0; idx < size; idx++) { + ShenandoahHeapRegion* r = data[idx]._region; + if (cset->is_preselected(r->index())) { + assert(r->age() >= InitialTenuringThreshold, "Preselected regions must have tenure age"); + // Entire region will be promoted, This region does not impact young-gen or old-gen evacuation reserve. + // This region has been pre-selected and its impact on promotion reserve is already accounted for. + + // r->used() is r->garbage() + r->get_live_data_bytes() + // Since all live data in this region is being evacuated from young-gen, it is as if this memory + // is garbage insofar as young-gen is concerned. Counting this as garbage reduces the need to + // reclaim highly utilized young-gen regions just for the sake of finding min_garbage to reclaim + // within youn-gen memory. + + cur_young_garbage += r->garbage(); + cset->add_region(r); + } + } if (is_global) { size_t max_young_cset = (size_t) (heap->get_young_evac_reserve() / ShenandoahEvacWaste); size_t young_cur_cset = 0; - size_t max_old_cset = (size_t) (heap->get_old_evac_reserve() / ShenandoahEvacWaste); + size_t max_old_cset = (size_t) (heap->get_old_evac_reserve() / ShenandoahOldEvacWaste); size_t old_cur_cset = 0; size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + max_young_cset; size_t min_garbage = (free_target > actual_free) ? (free_target - actual_free) : 0; @@ -126,6 +142,9 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand for (size_t idx = 0; idx < size; idx++) { ShenandoahHeapRegion* r = data[idx]._region; + if (cset->is_preselected(r->index())) { + continue; + } bool add_region = false; if (r->is_old()) { size_t new_cset = old_cur_cset + r->get_live_data_bytes(); @@ -133,17 +152,6 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand add_region = true; old_cur_cset = new_cset; } - } else if (cset->is_preselected(r->index())) { - assert(r->age() >= InitialTenuringThreshold, "Preselected regions must have tenure age"); - // Entire region will be promoted, This region does not impact young-gen or old-gen evacuation reserve. - // This region has been pre-selected and its impact on promotion reserve is already accounted for. - add_region = true; - // r->used() is r->garbage() + r->get_live_data_bytes() - // Since all live data in this region is being evacuated from young-gen, it is as if this memory - // is garbage insofar as young-gen is concerned. Counting this as garbage reduces the need to - // reclaim highly utilized young-gen regions just for the sake of finding min_garbage to reclaim - // within youn-gen memory. - cur_young_garbage += r->used(); } else if (r->age() < InitialTenuringThreshold) { size_t new_cset = young_cur_cset + r->get_live_data_bytes(); size_t region_garbage = r->garbage(); @@ -176,42 +184,29 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand for (size_t idx = 0; idx < size; idx++) { ShenandoahHeapRegion* r = data[idx]._region; - bool add_region = false; - - if (!r->is_old()) { - if (cset->is_preselected(r->index())) { - assert(r->age() >= InitialTenuringThreshold, "Preselected regions must have tenure age"); - // Entire region will be promoted, This region does not impact young-gen evacuation reserve. Memory has already - // been set aside to hold evacuation results as advance_promotion_reserve. - add_region = true; - // Since all live data in this region is being evacuated from young-gen, it is as if this memory - // is garbage insofar as young-gen is concerned. Counting this as garbage reduces the need to - // reclaim highly utilized young-gen regions just for the sake of finding min_garbage to reclaim - // within youn-gen memory - cur_young_garbage += r->get_live_data_bytes(); - } else if (r->age() < InitialTenuringThreshold) { - size_t new_cset = cur_cset + r->get_live_data_bytes(); - size_t region_garbage = r->garbage(); - size_t new_garbage = cur_young_garbage + region_garbage; - bool add_regardless = (region_garbage > ignore_threshold) && (new_garbage < min_garbage); - if ((new_cset <= max_cset) && (add_regardless || (region_garbage > garbage_threshold))) { - add_region = true; - cur_cset = new_cset; - cur_young_garbage = new_garbage; - } - } - // Note that we do not add aged regions if they were not pre-selected. The reason they were not preselected - // is because there is not sufficient room in old-gen to hold their to-be-promoted live objects. - - if (add_region) { + if (cset->is_preselected(r->index())) { + continue; + } + if (r->age() < InitialTenuringThreshold) { + size_t new_cset = cur_cset + r->get_live_data_bytes(); + size_t region_garbage = r->garbage(); + size_t new_garbage = cur_young_garbage + region_garbage; + bool add_regardless = (region_garbage > ignore_threshold) && (new_garbage < min_garbage); + assert(r->is_young(), "Only young candidates expected in the data array"); + if ((new_cset <= max_cset) && (add_regardless || (region_garbage > garbage_threshold))) { + cur_cset = new_cset; + cur_young_garbage = new_garbage; cset->add_region(r); } } + // Note that we do not add aged regions if they were not pre-selected. The reason they were not preselected + // is because there is not sufficient room in old-gen to hold their to-be-promoted live objects or because + // they are to be promoted in place. } } } else { // Traditional Shenandoah (non-generational) - size_t capacity = ShenandoahHeap::heap()->soft_max_capacity(); + size_t capacity = ShenandoahHeap::heap()->max_capacity(); size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + max_cset; size_t min_garbage = (free_target > actual_free) ? (free_target - actual_free) : 0; @@ -243,12 +238,21 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand } } } + + size_t collected_old = cset->get_old_bytes_reserved_for_evacuation(); + size_t collected_promoted = cset->get_young_bytes_to_be_promoted(); + size_t collected_young = cset->get_young_bytes_reserved_for_evacuation(); + + log_info(gc, ergo)("Chosen CSet evacuates young: " SIZE_FORMAT "%s (of which at least: " SIZE_FORMAT "%s are to be promoted), " + "old: " SIZE_FORMAT "%s", + byte_size_in_proper_unit(collected_young), proper_unit_for_byte_size(collected_young), + byte_size_in_proper_unit(collected_promoted), proper_unit_for_byte_size(collected_promoted), + byte_size_in_proper_unit(collected_old), proper_unit_for_byte_size(collected_old)); } void ShenandoahAdaptiveHeuristics::record_cycle_start() { ShenandoahHeuristics::record_cycle_start(); _allocation_rate.allocation_counter_reset(); - ++_cycles_since_last_resize; } void ShenandoahAdaptiveHeuristics::record_success_concurrent(bool abbreviated) { @@ -324,6 +328,84 @@ static double saturate(double value, double min, double max) { return MAX2(MIN2(value, max), min); } +// Return a conservative estimate of how much memory can be allocated before we need to start GC. The estimate is based +// on memory that is currently available within young generation plus all of the memory that will be added to the young +// generation at the end of the current cycle (as represented by young_regions_to_be_reclaimed) and on the anticipated +// amount of time required to perform a GC. +size_t ShenandoahAdaptiveHeuristics::bytes_of_allocation_runway_before_gc_trigger(size_t young_regions_to_be_reclaimed) { + assert(_generation->is_young(), "Only meaningful for young-gen heuristic"); + + size_t max_capacity = _generation->max_capacity(); + size_t capacity = _generation->soft_max_capacity(); + size_t usage = _generation->used(); + size_t available = (capacity > usage)? capacity - usage: 0; + size_t allocated = _generation->bytes_allocated_since_gc_start(); + + size_t available_young_collected = ShenandoahHeap::heap()->collection_set()->get_young_available_bytes_collected(); + size_t anticipated_available = + available + young_regions_to_be_reclaimed * ShenandoahHeapRegion::region_size_bytes() - available_young_collected; + size_t allocation_headroom = anticipated_available; + size_t spike_headroom = capacity * ShenandoahAllocSpikeFactor / 100; + size_t penalties = capacity * _gc_time_penalties / 100; + + double rate = _allocation_rate.sample(allocated); + + // At what value of available, would avg and spike triggers occur? + // if allocation_headroom < avg_cycle_time * avg_alloc_rate, then we experience avg trigger + // if allocation_headroom < avg_cycle_time * rate, then we experience spike trigger if is_spiking + // + // allocation_headroom = + // 0, if penalties > available or if penalties + spike_headroom > available + // available - penalties - spike_headroom, otherwise + // + // so we trigger if available - penalties - spike_headroom < avg_cycle_time * avg_alloc_rate, which is to say + // available < avg_cycle_time * avg_alloc_rate + penalties + spike_headroom + // or if available < penalties + spike_headroom + // + // since avg_cycle_time * avg_alloc_rate > 0, the first test is sufficient to test both conditions + // + // thus, evac_slack_avg is MIN2(0, available - avg_cycle_time * avg_alloc_rate + penalties + spike_headroom) + // + // similarly, evac_slack_spiking is MIN2(0, available - avg_cycle_time * rate + penalties + spike_headroom) + // but evac_slack_spiking is only relevant if is_spiking, as defined below. + + double avg_cycle_time = _gc_cycle_time_history->davg() + (_margin_of_error_sd * _gc_cycle_time_history->dsd()); + + // TODO: Consider making conservative adjustments to avg_cycle_time, such as: (avg_cycle_time *= 2) in cases where + // we expect a longer-than-normal GC duration. This includes mixed evacuations, evacuation that perform promotion + // including promotion in place, and OLD GC bootstrap cycles. It has been observed that these cycles sometimes + // require twice or more the duration of "normal" GC cycles. We have experimented with this approach. While it + // does appear to reduce the frequency of degenerated cycles due to late triggers, it also has the effect of reducing + // evacuation slack so that there is less memory available to be transferred to OLD. The result is that we + // throttle promotion and it takes too long to move old objects out of the young generation. + + double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd); + size_t evac_slack_avg; + if (anticipated_available > avg_cycle_time * avg_alloc_rate + penalties + spike_headroom) { + evac_slack_avg = anticipated_available - (avg_cycle_time * avg_alloc_rate + penalties + spike_headroom); + } else { + // we have no slack because it's already time to trigger + evac_slack_avg = 0; + } + + bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd); + size_t evac_slack_spiking; + if (is_spiking) { + if (anticipated_available > avg_cycle_time * rate + penalties + spike_headroom) { + evac_slack_spiking = anticipated_available - (avg_cycle_time * rate + penalties + spike_headroom); + } else { + // we have no slack because it's already time to trigger + evac_slack_spiking = 0; + } + } else { + evac_slack_spiking = evac_slack_avg; + } + + size_t threshold = min_free_threshold(); + size_t evac_min_threshold = (anticipated_available > threshold)? anticipated_available - threshold: 0; + return MIN3(evac_slack_spiking, evac_slack_avg, evac_min_threshold); +} + bool ShenandoahAdaptiveHeuristics::should_start_gc() { size_t capacity = _generation->soft_max_capacity(); size_t available = _generation->soft_available(); @@ -347,137 +429,144 @@ bool ShenandoahAdaptiveHeuristics::should_start_gc() { double rate = _allocation_rate.sample(allocated); _last_trigger = OTHER; - size_t min_threshold = min_free_threshold(); - - if (available < min_threshold) { - log_info(gc)("Trigger (%s): Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)", - _generation->name(), - byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), - byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold)); - return resize_and_evaluate(); - } - - // Check if we need to learn a bit about the application - const size_t max_learn = ShenandoahLearningSteps; - if (_gc_times_learned < max_learn) { - size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; - if (available < init_threshold) { - log_info(gc)("Trigger (%s): Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)", - _generation->name(), _gc_times_learned + 1, max_learn, - byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), - byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold)); + // OLD generation is maintained to be as small as possible. Depletion-of-free-pool triggers do not apply to old generation. + if (!_generation->is_old()) { + size_t min_threshold = min_free_threshold(); + if (available < min_threshold) { + log_info(gc)("Trigger (%s): Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)", + _generation->name(), + byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), + byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold)); return true; } - } - // Rationale: - // The idea is that there is an average allocation rate and there are occasional abnormal bursts (or spikes) of - // allocations that exceed the average allocation rate. What do these spikes look like? - // - // 1. At certain phase changes, we may discard large amounts of data and replace it with large numbers of newly - // allocated objects. This "spike" looks more like a phase change. We were in steady state at M bytes/sec - // allocation rate and now we're in a "reinitialization phase" that looks like N bytes/sec. We need the "spike" - // accommodation to give us enough runway to recalibrate our "average allocation rate". - // - // 2. The typical workload changes. "Suddenly", our typical workload of N TPS increases to N+delta TPS. This means - // our average allocation rate needs to be adjusted. Once again, we need the "spike" accomodation to give us - // enough runway to recalibrate our "average allocation rate". - // - // 3. Though there is an "average" allocation rate, a given workload's demand for allocation may be very bursty. We - // allocate a bunch of LABs during the 5 ms that follow completion of a GC, then we perform no more allocations for - // the next 150 ms. It seems we want the "spike" to represent the maximum divergence from average within the - // period of time between consecutive evaluation of the should_start_gc() service. Here's the thinking: - // - // a) Between now and the next time I ask whether should_start_gc(), we might experience a spike representing - // the anticipated burst of allocations. If that would put us over budget, then we should start GC immediately. - // b) Between now and the anticipated depletion of allocation pool, there may be two or more bursts of allocations. - // If there are more than one of these bursts, we can "approximate" that these will be separated by spans of - // time with very little or no allocations so the "average" allocation rate should be a suitable approximation - // of how this will behave. - // - // For cases 1 and 2, we need to "quickly" recalibrate the average allocation rate whenever we detect a change - // in operation mode. We want some way to decide that the average rate has changed. Make average allocation rate - // computations an independent effort. - - - // TODO: Account for inherent delays in responding to GC triggers - // 1. It has been observed that delays of 200 ms or greater are common between the moment we return true from should_start_gc() - // and the moment at which we begin execution of the concurrent reset phase. Add this time into the calculation of - // avg_cycle_time below. (What is "this time"? Perhaps we should remember recent history of this delay for the - // running workload and use the maximum delay recently seen for "this time".) - // 2. The frequency of inquiries to should_start_gc() is adaptive, ranging between ShenandoahControlIntervalMin and - // ShenandoahControlIntervalMax. The current control interval (or the max control interval) should also be added into - // the calculation of avg_cycle_time below. - - // Check if allocation headroom is still okay. This also factors in: - // 1. Some space to absorb allocation spikes (ShenandoahAllocSpikeFactor) - // 2. Accumulated penalties from Degenerated and Full GC - size_t allocation_headroom = available; - size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; - size_t penalties = capacity / 100 * _gc_time_penalties; - - allocation_headroom -= MIN2(allocation_headroom, penalties); - allocation_headroom -= MIN2(allocation_headroom, spike_headroom); + // Check if we need to learn a bit about the application + const size_t max_learn = ShenandoahLearningSteps; + if (_gc_times_learned < max_learn) { + size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; + if (available < init_threshold) { + log_info(gc)("Trigger (%s): Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" + SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)", + _generation->name(), _gc_times_learned + 1, max_learn, + byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), + byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold)); + return true; + } + } - double avg_cycle_time = _gc_cycle_time_history->davg() + (_margin_of_error_sd * _gc_cycle_time_history->dsd()); + // Rationale: + // The idea is that there is an average allocation rate and there are occasional abnormal bursts (or spikes) of + // allocations that exceed the average allocation rate. What do these spikes look like? + // + // 1. At certain phase changes, we may discard large amounts of data and replace it with large numbers of newly + // allocated objects. This "spike" looks more like a phase change. We were in steady state at M bytes/sec + // allocation rate and now we're in a "reinitialization phase" that looks like N bytes/sec. We need the "spike" + // accomodation to give us enough runway to recalibrate our "average allocation rate". + // + // 2. The typical workload changes. "Suddenly", our typical workload of N TPS increases to N+delta TPS. This means + // our average allocation rate needs to be adjusted. Once again, we need the "spike" accomodation to give us + // enough runway to recalibrate our "average allocation rate". + // + // 3. Though there is an "average" allocation rate, a given workload's demand for allocation may be very bursty. We + // allocate a bunch of LABs during the 5 ms that follow completion of a GC, then we perform no more allocations for + // the next 150 ms. It seems we want the "spike" to represent the maximum divergence from average within the + // period of time between consecutive evaluation of the should_start_gc() service. Here's the thinking: + // + // a) Between now and the next time I ask whether should_start_gc(), we might experience a spike representing + // the anticipated burst of allocations. If that would put us over budget, then we should start GC immediately. + // b) Between now and the anticipated depletion of allocation pool, there may be two or more bursts of allocations. + // If there are more than one of these bursts, we can "approximate" that these will be separated by spans of + // time with very little or no allocations so the "average" allocation rate should be a suitable approximation + // of how this will behave. + // + // For cases 1 and 2, we need to "quickly" recalibrate the average allocation rate whenever we detect a change + // in operation mode. We want some way to decide that the average rate has changed. Make average allocation rate + // computations an independent effort. - double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd); - log_debug(gc)("%s: average GC time: %.2f ms, allocation rate: %.0f %s/s", - _generation->name(), avg_cycle_time * 1000, - byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate)); - - if (avg_cycle_time > allocation_headroom / avg_alloc_rate) { - log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)", - _generation->name(), avg_cycle_time * 1000, - byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate), - byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), - _margin_of_error_sd); - - log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s", - byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), - byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom), - byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties), - byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom)); - - _last_trigger = RATE; - return resize_and_evaluate(); - } - bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd); - if (is_spiking && avg_cycle_time > allocation_headroom / rate) { - log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)", - _generation->name(), avg_cycle_time * 1000, - byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate), - byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), - _spike_threshold_sd); - _last_trigger = SPIKE; - return resize_and_evaluate(); - } + // Check if allocation headroom is still okay. This also factors in: + // 1. Some space to absorb allocation spikes (ShenandoahAllocSpikeFactor) + // 2. Accumulated penalties from Degenerated and Full GC - return ShenandoahHeuristics::should_start_gc(); -} + size_t allocation_headroom = available; + size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; + size_t penalties = capacity / 100 * _gc_time_penalties; -bool ShenandoahAdaptiveHeuristics::resize_and_evaluate() { - ShenandoahHeap* heap = ShenandoahHeap::heap(); - if (!heap->mode()->is_generational()) { - // We only attempt to resize the generations in generational mode. - return true; - } + allocation_headroom -= MIN2(allocation_headroom, penalties); + allocation_headroom -= MIN2(allocation_headroom, spike_headroom); - if (_cycles_since_last_resize <= MINIMUM_RESIZE_INTERVAL) { - log_info(gc, ergo)("Not resizing %s for another " UINT32_FORMAT " cycles", - _generation->name(), _cycles_since_last_resize); - return true; - } + double avg_cycle_time = _gc_cycle_time_history->davg() + (_margin_of_error_sd * _gc_cycle_time_history->dsd()); + double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd); + log_debug(gc)("%s: average GC time: %.2f ms, allocation rate: %.0f %s/s", + _generation->name(), + avg_cycle_time * 1000, byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate)); - if (!heap->generation_sizer()->transfer_capacity(_generation)) { - // We could not enlarge our generation, so we must start a gc cycle. - log_info(gc, ergo)("Could not increase size of %s, begin gc cycle", _generation->name()); - return true; - } + if (avg_cycle_time > allocation_headroom / avg_alloc_rate) { + + log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s)" + " to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)", + _generation->name(), avg_cycle_time * 1000, + byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate), + byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), + _margin_of_error_sd); + + log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " + SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s", + byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), + byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom), + byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties), + byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom)); - log_info(gc)("Increased size of %s generation, re-evaluate trigger criteria", _generation->name()); - return should_start_gc(); + _last_trigger = RATE; + return true; + } + + bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd); + if (is_spiking && avg_cycle_time > allocation_headroom / rate) { + log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s)" + " to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)", + _generation->name(), avg_cycle_time * 1000, + byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate), + byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), + _spike_threshold_sd); + _last_trigger = SPIKE; + return true; + } + + ShenandoahHeap* heap = ShenandoahHeap::heap(); + if (heap->mode()->is_generational()) { + // Get through promotions and mixed evacuations as quickly as possible. These cycles sometimes require significantly + // more time than traditional young-generation cycles so start them up as soon as possible. This is a "mitigation" + // for the reality that old-gen and young-gen activities are not truly "concurrent". If there is old-gen work to + // be done, we start up the young-gen GC threads so they can do some of this old-gen work. As implemented, promotion + // gets priority over old-gen marking. + + size_t promo_potential = heap->get_promotion_potential(); + size_t promo_in_place_potential = heap->get_promotion_in_place_potential(); + ShenandoahOldHeuristics* old_heuristics = (ShenandoahOldHeuristics*) heap->old_generation()->heuristics(); + size_t mixed_candidates = old_heuristics->unprocessed_old_collection_candidates(); + if (promo_potential > 0) { + // Detect unsigned arithmetic underflow + assert(promo_potential < heap->capacity(), "Sanity"); + log_info(gc)("Trigger (%s): expedite promotion of " SIZE_FORMAT "%s", + _generation->name(), byte_size_in_proper_unit(promo_potential), proper_unit_for_byte_size(promo_potential)); + return true; + } else if (promo_in_place_potential > 0) { + // Detect unsigned arithmetic underflow + assert(promo_in_place_potential < heap->capacity(), "Sanity"); + log_info(gc)("Trigger (%s): expedite promotion in place of " SIZE_FORMAT "%s", _generation->name(), + byte_size_in_proper_unit(promo_in_place_potential), + proper_unit_for_byte_size(promo_in_place_potential)); + return true; + } else if (mixed_candidates > 0) { + // We need to run young GC in order to open up some free heap regions so we can finish mixed evacuations. + log_info(gc)("Trigger (%s): expedite mixed evacuation of " SIZE_FORMAT " regions", + _generation->name(), mixed_candidates); + return true; + } + } + } + return ShenandoahHeuristics::should_start_gc(); } void ShenandoahAdaptiveHeuristics::adjust_last_trigger_parameters(double amount) { diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp index 85b563f146d..494173751ea 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp @@ -39,7 +39,6 @@ class ShenandoahAllocationRate : public CHeapObj<mtGC> { double upper_bound(double sds) const; bool is_spiking(double rate, double threshold) const; - private: double instantaneous_rate(double time, size_t allocated) const; @@ -72,6 +71,8 @@ class ShenandoahAdaptiveHeuristics : public ShenandoahHeuristics { virtual bool is_diagnostic() { return false; } virtual bool is_experimental() { return false; } + virtual size_t bytes_of_allocation_runway_before_gc_trigger(size_t young_regions_to_be_recycled); + private: // These are used to adjust the margin of error and the spike threshold // in response to GC cycle outcomes. These values are shared, but the @@ -85,13 +86,6 @@ class ShenandoahAdaptiveHeuristics : public ShenandoahHeuristics { const static double LOWEST_EXPECTED_AVAILABLE_AT_END; const static double HIGHEST_EXPECTED_AVAILABLE_AT_END; - // At least this many cycles must execute before the heuristic will attempt - // to resize its generation. This is to prevent the heuristic from rapidly - // maxing out the generation size (which only forces the collector for the - // other generation to run more frequently, defeating the purpose of improving - // MMU). - const static uint MINIMUM_RESIZE_INTERVAL; - friend class ShenandoahAllocationRate; // Used to record the last trigger that signaled to start a GC. @@ -106,8 +100,6 @@ class ShenandoahAdaptiveHeuristics : public ShenandoahHeuristics { void adjust_margin_of_error(double amount); void adjust_spike_threshold(double amount); - bool resize_and_evaluate(); - ShenandoahAllocationRate _allocation_rate; // The margin of error expressed in standard deviations to add to our @@ -135,10 +127,6 @@ class ShenandoahAdaptiveHeuristics : public ShenandoahHeuristics { // establishes what is 'normal' for the application and is used as a // source of feedback to adjust trigger parameters. TruncatedSeq _available; - - // Do not attempt to resize the generation for this heuristic until this - // value is greater than MINIMUM_RESIZE_INTERVAL. - uint _cycles_since_last_resize; }; #endif // SHARE_GC_SHENANDOAH_HEURISTICS_SHENANDOAHADAPTIVEHEURISTICS_HPP diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahCompactHeuristics.cpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahCompactHeuristics.cpp index a84c23b678c..250d1317306 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahCompactHeuristics.cpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahCompactHeuristics.cpp @@ -49,7 +49,8 @@ ShenandoahCompactHeuristics::ShenandoahCompactHeuristics(ShenandoahGeneration* g bool ShenandoahCompactHeuristics::should_start_gc() { size_t max_capacity = _generation->max_capacity(); size_t capacity = _generation->soft_max_capacity(); - size_t available = _generation->available(); + size_t usage = _generation->used(); + size_t available = (capacity > usage)? capacity - usage: 0; // Make sure the code below treats available without the soft tail. size_t soft_tail = max_capacity - capacity; diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.cpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.cpp index ec0c365b873..93a4f414325 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.cpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.cpp @@ -39,11 +39,22 @@ #include "logging/log.hpp" #include "logging/logTag.hpp" #include "runtime/globals_extension.hpp" +#include "utilities/quickSort.hpp" +// sort by decreasing garbage (so most garbage comes first) int ShenandoahHeuristics::compare_by_garbage(RegionData a, RegionData b) { - if (a._garbage > b._garbage) + if (a._u._garbage > b._u._garbage) return -1; - else if (a._garbage < b._garbage) + else if (a._u._garbage < b._u._garbage) + return 1; + else return 0; +} + +// sort by increasing live (so least live comes first) +int ShenandoahHeuristics::compare_by_live(RegionData a, RegionData b) { + if (a._u._live_data < b._u._live_data) + return -1; + else if (a._u._live_data > b._u._live_data) return 1; else return 0; } @@ -76,29 +87,170 @@ ShenandoahHeuristics::~ShenandoahHeuristics() { FREE_C_HEAP_ARRAY(RegionGarbage, _region_data); } -size_t ShenandoahHeuristics::select_aged_regions(size_t old_available, size_t num_regions, bool* preselected_regions) { +typedef struct { + ShenandoahHeapRegion* _region; + size_t _live_data; +} AgedRegionData; + +static int compare_by_aged_live(AgedRegionData a, AgedRegionData b) { + if (a._live_data < b._live_data) + return -1; + else if (a._live_data > b._live_data) + return 1; + else return 0; +} + +// Preselect for inclusion into the collection set regions whose age is at or above tenure age which contain more than +// ShenandoahOldGarbageThreshold amounts of garbage. We identify these regions by setting the appropriate entry of +// candidate_regions_for_promotion_by_copy[] to true. All entries are initialized to false before calling this +// function. +// +// During the subsequent selection of the collection set, we give priority to these promotion set candidates. +// Without this prioritization, we found that the aged regions tend to be ignored because they typically have +// much less garbage and much more live data than the recently allocated "eden" regions. When aged regions are +// repeatedly excluded from the collection set, the amount of live memory within the young generation tends to +// accumulate and this has the undesirable side effect of causing young-generation collections to require much more +// CPU and wall-clock time. +// +// A second benefit of treating aged regions differently than other regions during collection set selection is +// that this allows us to more accurately budget memory to hold the results of evacuation. Memory for evacuation +// of aged regions must be reserved in the old generations. Memory for evacuation of all other regions must be +// reserved in the young generation. +// +// A side effect performed by this function is to tally up the number of regions and the number of live bytes +// that we plan to promote-in-place during the current GC cycle. This information, which is stored with +// an invocation of heap->set_promotion_in_place_potential(), feeds into subsequent decisions about when to +// trigger the next GC and may identify special work to be done during this GC cycle if we choose to abbreviate it. +// +// Returns bytes of old-gen memory consumed by selected aged regions +size_t ShenandoahHeuristics::select_aged_regions(size_t old_available, size_t num_regions, + bool candidate_regions_for_promotion_by_copy[]) { ShenandoahHeap* heap = ShenandoahHeap::heap(); assert(heap->mode()->is_generational(), "Only in generational mode"); - + ShenandoahMarkingContext* const ctx = heap->marking_context(); size_t old_consumed = 0; + size_t promo_potential = 0; + size_t anticipated_promote_in_place_live = 0; + + heap->clear_promotion_in_place_potential(); + heap->clear_promotion_potential(); + size_t candidates = 0; + size_t candidates_live = 0; + size_t old_garbage_threshold = (ShenandoahHeapRegion::region_size_bytes() * ShenandoahOldGarbageThreshold) / 100; + size_t promote_in_place_regions = 0; + size_t promote_in_place_live = 0; + size_t promote_in_place_pad = 0; + size_t anticipated_candidates = 0; + size_t anticipated_promote_in_place_regions = 0; + + // Sort the promotion-eligible regions according to live-data-bytes so that we can first reclaim regions that require + // less evacuation effort. This prioritizes garbage first, expanding the allocation pool before we begin the work of + // reclaiming regions that require more effort. + AgedRegionData* sorted_regions = (AgedRegionData*) alloca(num_regions * sizeof(AgedRegionData)); for (size_t i = 0; i < num_regions; i++) { - ShenandoahHeapRegion* region = heap->get_region(i); - if (in_generation(region) && !region->is_empty() && region->is_regular() && (region->age() >= InitialTenuringThreshold)) { - size_t promotion_need = (size_t) (region->get_live_data_bytes() * ShenandoahEvacWaste); - if (old_consumed + promotion_need < old_available) { + ShenandoahHeapRegion* r = heap->get_region(i); + if (r->is_empty() || !r->has_live() || !r->is_young() || !r->is_regular()) { + continue; + } + if (r->age() >= InitialTenuringThreshold) { + r->save_top_before_promote(); + if ((r->garbage() < old_garbage_threshold)) { + HeapWord* tams = ctx->top_at_mark_start(r); + HeapWord* original_top = r->top(); + if (tams == original_top) { + // Fill the remnant memory within this region to assure no allocations prior to promote in place. Otherwise, + // newly allocated objects will not be parseable when promote in place tries to register them. Furthermore, any + // new allocations would not necessarily be eligible for promotion. This addresses both issues. + size_t remnant_size = r->free() / HeapWordSize; + if (remnant_size > ShenandoahHeap::min_fill_size()) { + ShenandoahHeap::fill_with_object(original_top, remnant_size); + r->set_top(r->end()); + promote_in_place_pad += remnant_size * HeapWordSize; + } else { + // Since the remnant is so small that it cannot be filled, we don't have to worry about any accidental + // allocations occuring within this region before the region is promoted in place. + } + promote_in_place_regions++; + promote_in_place_live += r->get_live_data_bytes(); + } + // Else, we do not promote this region (either in place or by copy) because it has received new allocations. + + // During evacuation, we exclude from promotion regions for which age > tenure threshold, garbage < garbage-threshold, + // and get_top_before_promote() != tams + } else { + // After sorting and selecting best candidates below, we may decide to exclude this promotion-eligible region + // from the current collection sets. If this happens, we will consider this region as part of the anticipated + // promotion potential for the next GC pass. + size_t live_data = r->get_live_data_bytes(); + candidates_live += live_data; + sorted_regions[candidates]._region = r; + sorted_regions[candidates++]._live_data = live_data; + } + } else { + // We only anticipate to promote regular regions if garbage() is above threshold. Tenure-aged regions with less + // garbage are promoted in place. These take a different path to old-gen. Note that certain regions that are + // excluded from anticipated promotion because their garbage content is too low (causing us to anticipate that + // the region would be promoted in place) may be eligible for evacuation promotion by the time promotion takes + // place during a subsequent GC pass because more garbage is found within the region between now and then. This + // should not happen if we are properly adapting the tenure age. The theory behind adaptive tenuring threshold + // is to choose the youngest age that demonstrates no "significant" futher loss of population since the previous + // age. If not this, we expect the tenure age to demonstrate linear population decay for at least two population + // samples, whereas we expect to observe exponetial population decay for ages younger than the tenure age. + // + // In the case that certain regions which were anticipated to be promoted in place need to be promoted by + // evacuation, it may be the case that there is not sufficient reserve within old-gen to hold evacuation of + // these regions. The likely outcome is that these regions will not be selected for evacuation or promotion + // in the current cycle and we will anticipate that they will be promoted in the next cycle. This will cause + // us to reserve more old-gen memory so that these objects can be promoted in the subsequent cycle. + // + // TODO: + // If we are auto-tuning the tenure age and regions that were anticipated to be promoted in place end up + // being promoted by evacuation, this event should feed into the tenure-age-selection heuristic so that + // the tenure age can be increased. + if (heap->is_aging_cycle() && (r->age() + 1 == InitialTenuringThreshold)) { + if (r->garbage() >= old_garbage_threshold) { + anticipated_candidates++; + promo_potential += r->get_live_data_bytes(); + } + else { + anticipated_promote_in_place_regions++; + anticipated_promote_in_place_live += r->get_live_data_bytes(); + } + } + } + // Note that we keep going even if one region is excluded from selection. + // Subsequent regions may be selected if they have smaller live data. + } + // Sort in increasing order according to live data bytes. Note that candidates represents the number of regions + // that qualify to be promoted by evacuation. + if (candidates > 0) { + QuickSort::sort<AgedRegionData>(sorted_regions, candidates, compare_by_aged_live, false); + for (size_t i = 0; i < candidates; i++) { + size_t region_live_data = sorted_regions[i]._live_data; + size_t promotion_need = (size_t) (region_live_data * ShenandoahPromoEvacWaste); + if (old_consumed + promotion_need <= old_available) { + ShenandoahHeapRegion* region = sorted_regions[i]._region; old_consumed += promotion_need; - preselected_regions[i] = true; + candidate_regions_for_promotion_by_copy[region->index()] = true; + } else { + // We rejected this promotable region from the collection set because we had no room to hold its copy. + // Add this region to promo potential for next GC. + promo_potential += region_live_data; } - // Note that we keep going even if one region is excluded from selection. - // Subsequent regions may be selected if they have smaller live data. + // We keep going even if one region is excluded from selection because we need to accumulate all eligible + // regions that are not preselected into promo_potential } } + heap->set_pad_for_promote_in_place(promote_in_place_pad); + heap->set_promotion_potential(promo_potential); + heap->set_promotion_in_place_potential(anticipated_promote_in_place_live); return old_consumed; } void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set, ShenandoahOldHeuristics* old_heuristics) { ShenandoahHeap* heap = ShenandoahHeap::heap(); bool is_generational = heap->mode()->is_generational(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); assert(collection_set->count() == 0, "Must be empty"); assert(!is_generational || !_generation->is_old(), "Old GC invokes ShenandoahOldHeuristics::choose_collection_set()"); @@ -113,6 +265,7 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec RegionData* candidates = _region_data; size_t cand_idx = 0; + size_t preselected_candidates = 0; size_t total_garbage = 0; @@ -122,12 +275,21 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec size_t free = 0; size_t free_regions = 0; + size_t old_garbage_threshold = (region_size_bytes * ShenandoahOldGarbageThreshold) / 100; + // This counts number of humongous regions that we intend to promote in this cycle. + size_t humongous_regions_promoted = 0; + // This counts bytes of memory used by hunongous regions to be promoted in place. + size_t humongous_bytes_promoted = 0; + // This counts number of regular regions that will be promoted in place. + size_t regular_regions_promoted_in_place = 0; + // This counts bytes of memory used by regular regions to be promoted in place. + size_t regular_regions_promoted_usage = 0; + for (size_t i = 0; i < num_regions; i++) { ShenandoahHeapRegion* region = heap->get_region(i); if (is_generational && !in_generation(region)) { continue; } - size_t garbage = region->garbage(); total_garbage += garbage; if (region->is_empty()) { @@ -141,17 +303,37 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec region->make_trash_immediate(); } else { assert(!_generation->is_old(), "OLD is handled elsewhere"); + bool is_candidate; // This is our candidate for later consideration. - candidates[cand_idx]._region = region; if (is_generational && collection_set->is_preselected(i)) { - // If region is preselected, we know mode()->is_generational() and region->age() >= InitialTenuringThreshold) - garbage = ShenandoahHeapRegion::region_size_bytes(); + // If !is_generational, we cannot ask if is_preselected. If is_preselected, we know + // region->age() >= InitialTenuringThreshold). + is_candidate = true; + preselected_candidates++; + // Set garbage value to maximum value to force this into the sorted collection set. + garbage = region_size_bytes; + } else if (is_generational && region->is_young() && (region->age() >= InitialTenuringThreshold)) { + // Note that for GLOBAL GC, region may be OLD, and OLD regions do not qualify for pre-selection + + // This region is old enough to be promoted but it was not preselected, either because its garbage is below + // ShenandoahOldGarbageThreshold so it will be promoted in place, or because there is not sufficient room + // in old gen to hold the evacuated copies of this region's live data. In both cases, we choose not to + // place this region into the collection set. + if (region->garbage_before_padded_for_promote() < old_garbage_threshold) { + regular_regions_promoted_in_place++; + regular_regions_promoted_usage += region->used_before_promote(); + } + is_candidate = false; + } else { + is_candidate = true; + } + if (is_candidate) { + candidates[cand_idx]._region = region; + candidates[cand_idx]._u._garbage = garbage; + cand_idx++; } - candidates[cand_idx]._garbage = garbage; - cand_idx++; } } else if (region->is_humongous_start()) { - // Reclaim humongous regions here, and count them as the immediate garbage #ifdef ASSERT bool reg_live = region->has_live(); @@ -166,6 +348,13 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec // Count only the start. Continuations would be counted on "trash" path immediate_regions++; immediate_garbage += garbage; + } else { + if (region->is_young() && region->age() >= InitialTenuringThreshold) { + oop obj = cast_to_oop(region->bottom()); + size_t humongous_regions = ShenandoahHeapRegion::required_regions(obj->size() * HeapWordSize); + humongous_regions_promoted += humongous_regions; + humongous_bytes_promoted += obj->size() * HeapWordSize; + } } } else if (region->is_trash()) { // Count in just trashed collection set, during coalesced CM-with-UR @@ -173,6 +362,14 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec immediate_garbage += garbage; } } + heap->reserve_promotable_humongous_regions(humongous_regions_promoted); + heap->reserve_promotable_humongous_usage(humongous_bytes_promoted); + heap->reserve_promotable_regular_regions(regular_regions_promoted_in_place); + heap->reserve_promotable_regular_usage(regular_regions_promoted_usage); + log_info(gc, ergo)("Planning to promote in place " SIZE_FORMAT " humongous regions and " SIZE_FORMAT + " regular regions, spanning a total of " SIZE_FORMAT " used bytes", + humongous_regions_promoted, regular_regions_promoted_in_place, + humongous_regions_promoted * ShenandoahHeapRegion::region_size_bytes() + regular_regions_promoted_usage); // Step 2. Look back at garbage statistics, and decide if we want to collect anything, // given the amount of immediately reclaimable garbage. If we do, figure out the collection set. @@ -185,7 +382,9 @@ void ShenandoahHeuristics::choose_collection_set(ShenandoahCollectionSet* collec size_t immediate_percent = (total_garbage == 0) ? 0 : (immediate_garbage * 100 / total_garbage); collection_set->set_immediate_trash(immediate_garbage); - if (immediate_percent <= ShenandoahImmediateThreshold) { + ShenandoahGeneration* young_gen = heap->young_generation(); + bool doing_promote_in_place = (humongous_regions_promoted + regular_regions_promoted_in_place > 0); + if (doing_promote_in_place || (preselected_candidates > 0) || (immediate_percent <= ShenandoahImmediateThreshold)) { if (old_heuristics != nullptr) { old_heuristics->prime_collection_set(collection_set); } else { @@ -359,6 +558,12 @@ void ShenandoahHeuristics::initialize() { // Nothing to do by default. } +size_t ShenandoahHeuristics::bytes_of_allocation_runway_before_gc_trigger(size_t young_regions_to_be_recycled) { + assert(false, "Only implemented for young Adaptive Heuristics"); + return 0; +} + + double ShenandoahHeuristics::elapsed_cycle_time() const { return os::elapsedTime() - _cycle_start; } @@ -370,6 +575,10 @@ bool ShenandoahHeuristics::in_generation(ShenandoahHeapRegion* region) { } size_t ShenandoahHeuristics::min_free_threshold() { - size_t min_free_threshold = _generation->is_old() ? ShenandoahOldMinFreeThreshold : ShenandoahMinFreeThreshold; - return _generation->soft_max_capacity() / 100 * min_free_threshold; + assert(!_generation->is_old(), "min_free_threshold is only relevant to young GC"); + size_t min_free_threshold = ShenandoahMinFreeThreshold; + // Note that soft_max_capacity() / 100 * min_free_threshold is smaller than max_capacity() / 100 * min_free_threshold. + // We want to behave conservatively here, so use max_capacity(). By returning a larger value, we cause the GC to + // trigger when the remaining amount of free shrinks below the larger threshold. + return _generation->max_capacity() / 100 * min_free_threshold; } diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.hpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.hpp index aba842c2455..6b33025dfa8 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.hpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahHeuristics.hpp @@ -70,7 +70,10 @@ class ShenandoahHeuristics : public CHeapObj<mtGC> { typedef struct { ShenandoahHeapRegion* _region; - size_t _garbage; + union { + size_t _garbage; // Not used by old-gen heuristics. + size_t _live_data; // Only used for old-gen heuristics, which prioritizes retention of _live_data over garbage reclaim + } _u; } RegionData; ShenandoahGeneration* _generation; @@ -106,6 +109,14 @@ class ShenandoahHeuristics : public CHeapObj<mtGC> { static int compare_by_garbage(RegionData a, RegionData b); + // Compare by live is used to prioritize compaction of old-gen regions. With old-gen compaction, the goal is + // to tightly pack long-lived objects into available regions. In most cases, there has not been an accumulation + // of garbage within old-gen regions. The more likely opportunity will be to combine multiple sparsely populated + // old-gen regions which may have been promoted in place into a smaller number of densely packed old-gen regions. + // This improves subsequent allocation efficiency and reduces the likelihood of allocation failure (including + // humongous allocation failure) due to fragmentation of the available old-gen allocation pool + static int compare_by_live(RegionData a, RegionData b); + // TODO: We need to enhance this API to give visibility to accompanying old-gen evacuation effort. // In the case that the old-gen evacuation effort is small or zero, the young-gen heuristics // should feel free to dedicate increased efforts to young-gen evacuation. @@ -156,7 +167,7 @@ class ShenandoahHeuristics : public CHeapObj<mtGC> { virtual void reset_gc_learning(); - virtual size_t select_aged_regions(size_t old_available, size_t num_regions, bool* preselected_regions); + virtual size_t select_aged_regions(size_t old_available, size_t num_regions, bool candidate_regions_for_promotion_by_copy[]); virtual void choose_collection_set(ShenandoahCollectionSet* collection_set, ShenandoahOldHeuristics* old_heuristics); @@ -169,6 +180,8 @@ class ShenandoahHeuristics : public CHeapObj<mtGC> { virtual bool is_experimental() = 0; virtual void initialize(); + virtual size_t bytes_of_allocation_runway_before_gc_trigger(size_t region_to_be_recycled); + double elapsed_cycle_time() const; }; diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.cpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.cpp index ad8535ebe33..5722103d73a 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.cpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.cpp @@ -43,20 +43,23 @@ ShenandoahOldHeuristics::ShenandoahOldHeuristics(ShenandoahOldGeneration* genera _next_old_collection_candidate(0), _last_old_region(0), _trigger_heuristic(trigger_heuristic), + _old_generation(generation), _promotion_failed(false), - _old_generation(generation) + _cannot_expand_trigger(false), + _fragmentation_trigger(false), + _growth_trigger(false) { assert(_generation->is_old(), "This service only available for old-gc heuristics"); } bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* collection_set) { + ShenandoahHeap* heap = ShenandoahHeap::heap(); if (unprocessed_old_collection_candidates() == 0) { return false; } _first_pinned_candidate = NOT_FOUND; - ShenandoahHeap* heap = ShenandoahHeap::heap(); uint included_old_regions = 0; size_t evacuated_old_bytes = 0; size_t collected_old_bytes = 0; @@ -66,15 +69,36 @@ bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* coll // of memory that can still be evacuated. We address this by reducing the evacuation budget by the amount // of live memory in that region and by the amount of unallocated memory in that region if the evacuation // budget is constrained by availability of free memory. - size_t old_evacuation_budget = (size_t) ((double) heap->get_old_evac_reserve() / ShenandoahEvacWaste); + size_t old_evacuation_budget = (size_t) ((double) heap->get_old_evac_reserve() / ShenandoahOldEvacWaste); + size_t unfragmented_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes(); + size_t fragmented_available; + size_t excess_fragmented_available; + + if (unfragmented_available > old_evacuation_budget) { + unfragmented_available = old_evacuation_budget; + fragmented_available = 0; + excess_fragmented_available = 0; + } else { + assert(_old_generation->available() > old_evacuation_budget, "Cannot budget more than is available"); + fragmented_available = _old_generation->available() - unfragmented_available; + assert(fragmented_available + unfragmented_available >= old_evacuation_budget, "Budgets do not add up"); + if (fragmented_available + unfragmented_available > old_evacuation_budget) { + excess_fragmented_available = (fragmented_available + unfragmented_available) - old_evacuation_budget; + fragmented_available -= excess_fragmented_available; + } + } + size_t remaining_old_evacuation_budget = old_evacuation_budget; - size_t lost_evacuation_capacity = 0; log_info(gc)("Choose old regions for mixed collection: old evacuation budget: " SIZE_FORMAT "%s, candidates: %u", byte_size_in_proper_unit(old_evacuation_budget), proper_unit_for_byte_size(old_evacuation_budget), unprocessed_old_collection_candidates()); + size_t lost_evacuation_capacity = 0; + // The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen - // concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates() + // concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates(). + // Candidate regions are ordered according to increasing amount of live data. If there is not sufficient room to + // evacuate region N, then there is no need to even consider evacuating region N+1. while (unprocessed_old_collection_candidates() > 0) { // Old collection candidates are sorted in order of decreasing garbage contained therein. ShenandoahHeapRegion* r = next_old_collection_candidate(); @@ -82,31 +106,74 @@ bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* coll break; } - // If we choose region r to be collected, then we need to decrease the capacity to hold other evacuations by - // the size of r's free memory. - - // It's probably overkill to compensate with lost_evacuation_capacity. - // But it's the safe thing to do and has minimal impact on content of primed collection set. - size_t live = r->get_live_data_bytes(); - if (live + lost_evacuation_capacity <= remaining_old_evacuation_budget) { - // Decrement remaining evacuation budget by bytes that will be copied. - lost_evacuation_capacity += r->free(); - remaining_old_evacuation_budget -= live; - collection_set->add_region(r); - included_old_regions++; - evacuated_old_bytes += live; - collected_old_bytes += r->garbage(); - consume_old_collection_candidate(); + // If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need + // to decrease the capacity of the fragmented memory by the scaled loss. + + size_t live_data_for_evacuation = r->get_live_data_bytes(); + size_t lost_available = r->free(); + + if ((lost_available > 0) && (excess_fragmented_available > 0)) { + if (lost_available < excess_fragmented_available) { + excess_fragmented_available -= lost_available; + lost_evacuation_capacity -= lost_available; + lost_available = 0; + } else { + lost_available -= excess_fragmented_available; + lost_evacuation_capacity -= excess_fragmented_available; + excess_fragmented_available = 0; + } + } + size_t scaled_loss = (size_t) ((double) lost_available / ShenandoahOldEvacWaste); + if ((lost_available > 0) && (fragmented_available > 0)) { + if (scaled_loss + live_data_for_evacuation < fragmented_available) { + fragmented_available -= scaled_loss; + scaled_loss = 0; + } else { + // We will have to allocate this region's evacuation memory from unfragmented memory, so don't bother + // to decrement scaled_loss + } + } + if (scaled_loss > 0) { + // We were not able to account for the lost free memory within fragmented memory, so we need to take this + // allocation out of unfragmented memory. Unfragmented memory does not need to account for loss of free. + if (live_data_for_evacuation > unfragmented_available) { + // There is not room to evacuate this region or any that come after it in within the candidates array. + break; + } else { + unfragmented_available -= live_data_for_evacuation; + } } else { - break; + // Since scaled_loss == 0, we have accounted for the loss of free memory, so we can allocate from either + // fragmented or unfragmented available memory. Use up the fragmented memory budget first. + size_t evacuation_need = live_data_for_evacuation; + + if (evacuation_need > fragmented_available) { + evacuation_need -= fragmented_available; + fragmented_available = 0; + } else { + fragmented_available -= evacuation_need; + evacuation_need = 0; + } + if (evacuation_need > unfragmented_available) { + // There is not room to evacuate this region or any that come after it in within the candidates array. + break; + } else { + unfragmented_available -= evacuation_need; + // dead code: evacuation_need == 0; + } } + collection_set->add_region(r); + included_old_regions++; + evacuated_old_bytes += live_data_for_evacuation; + collected_old_bytes += r->garbage(); + consume_old_collection_candidate(); } if (_first_pinned_candidate != NOT_FOUND) { // Need to deal with pinned regions slide_pinned_regions_to_front(); } - + decrease_unprocessed_old_collection_candidates_live_memory(evacuated_old_bytes); if (included_old_regions > 0) { log_info(gc)("Old-gen piggyback evac (" UINT32_FORMAT " regions, evacuating " SIZE_FORMAT "%s, reclaiming: " SIZE_FORMAT "%s)", included_old_regions, @@ -116,6 +183,8 @@ bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* coll if (unprocessed_old_collection_candidates() == 0) { // We have added the last of our collection candidates to a mixed collection. + // Any triggers that occurred during mixed evacuations may no longer be valid. They can retrigger if appropriate. + clear_triggers(); _old_generation->transition_to(ShenandoahOldGeneration::IDLE); } else if (included_old_regions == 0) { // We have candidates, but none were included for evacuation - are they all pinned? @@ -202,7 +271,7 @@ void ShenandoahOldHeuristics::slide_pinned_regions_to_front() { if (skipped._region->is_pinned()) { RegionData& available_slot = _region_data[write_index]; available_slot._region = skipped._region; - available_slot._garbage = skipped._garbage; + available_slot._u._live_data = skipped._u._live_data; --write_index; } } @@ -232,6 +301,7 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() { size_t num_regions = heap->num_regions(); size_t immediate_garbage = 0; size_t immediate_regions = 0; + size_t live_data = 0; RegionData* candidates = _region_data; for (size_t i = 0; i < num_regions; i++) { @@ -241,7 +311,9 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() { } size_t garbage = region->garbage(); + size_t live_bytes = region->get_live_data_bytes(); total_garbage += garbage; + live_data += live_bytes; if (region->is_regular() || region->is_pinned()) { if (!region->has_live()) { @@ -252,7 +324,7 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() { } else { region->begin_preemptible_coalesce_and_fill(); candidates[cand_idx]._region = region; - candidates[cand_idx]._garbage = garbage; + candidates[cand_idx]._u._live_data = live_bytes; cand_idx++; } } else if (region->is_humongous_start()) { @@ -273,42 +345,63 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() { } } + _old_generation->set_live_bytes_after_last_mark(live_data); + // TODO: Consider not running mixed collects if we recovered some threshold percentage of memory from immediate garbage. // This would be similar to young and global collections shortcutting evacuation, though we'd probably want a separate // threshold for the old generation. - // Prioritize regions to select garbage-first regions - QuickSort::sort<RegionData>(candidates, cand_idx, compare_by_garbage, false); + // Unlike young, we are more interested in efficiently packing OLD-gen than in reclaiming garbage first. We sort by live-data. + // Some regular regions may have been promoted in place with no garbage but also with very little live data. When we "compact" + // old-gen, we want to pack these underutilized regions together so we can have more unaffiliated (unfragmented) free regions + // in old-gen. + QuickSort::sort<RegionData>(candidates, cand_idx, compare_by_live, false); - // Any old-gen region that contains (ShenandoahOldGarbageThreshold (default value 25))% garbage or more is to - // be evacuated. + // Any old-gen region that contains (ShenandoahOldGarbageThreshold (default value 25)% garbage or more is to be + // added to the list of candidates for subsequent mixed evacuations. // // TODO: allow ShenandoahOldGarbageThreshold to be determined adaptively, by heuristics. + const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + + // The convention is to collect regions that have more than this amount of garbage. + const size_t garbage_threshold = region_size_bytes * ShenandoahOldGarbageThreshold / 100; + + // Englightened interpretation: collect regions that have less than this amount of live. + const size_t live_threshold = region_size_bytes - garbage_threshold; - const size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahOldGarbageThreshold / 100; size_t candidates_garbage = 0; _last_old_region = (uint)cand_idx; _last_old_collection_candidate = (uint)cand_idx; _next_old_collection_candidate = 0; + size_t unfragmented = 0; + for (size_t i = 0; i < cand_idx; i++) { - if (candidates[i]._garbage < garbage_threshold) { - // Candidates are sorted in decreasing order of garbage, so no regions after this will be above the threshold + size_t live = candidates[i]._u._live_data; + if (live > live_threshold) { + // Candidates are sorted in increasing order of live data, so no regions after this will be below the threshold. _last_old_collection_candidate = (uint)i; break; } - candidates_garbage += candidates[i]._garbage; + size_t region_garbage = candidates[i]._region->garbage(); + size_t region_free = candidates[i]._region->free(); + candidates_garbage += region_garbage; + unfragmented += region_free; } // Note that we do not coalesce and fill occupied humongous regions // HR: humongous regions, RR: regular regions, CF: coalesce and fill regions size_t collectable_garbage = immediate_garbage + candidates_garbage; - log_info(gc)("Old-Gen Collectable Garbage: " SIZE_FORMAT "%s over " UINT32_FORMAT " regions, " + size_t old_candidates = _last_old_collection_candidate; + log_info(gc)("Old-Gen Collectable Garbage: " SIZE_FORMAT "%s " + "consolidated with free: " SIZE_FORMAT "%s, over " SIZE_FORMAT " regions, " "Old-Gen Immediate Garbage: " SIZE_FORMAT "%s over " SIZE_FORMAT " regions.", - byte_size_in_proper_unit(collectable_garbage), proper_unit_for_byte_size(collectable_garbage), _last_old_collection_candidate, - byte_size_in_proper_unit(immediate_garbage), proper_unit_for_byte_size(immediate_garbage), immediate_regions); - + byte_size_in_proper_unit(collectable_garbage), proper_unit_for_byte_size(collectable_garbage), + byte_size_in_proper_unit(unfragmented), proper_unit_for_byte_size(unfragmented), old_candidates, + byte_size_in_proper_unit(immediate_garbage), proper_unit_for_byte_size(immediate_garbage), immediate_regions); + size_t mixed_evac_live = old_candidates * region_size_bytes - (candidates_garbage + unfragmented); + set_unprocessed_old_collection_candidates_live_memory(mixed_evac_live); if (unprocessed_old_collection_candidates() == 0) { _old_generation->transition_to(ShenandoahOldGeneration::IDLE); } else { @@ -316,6 +409,20 @@ void ShenandoahOldHeuristics::prepare_for_old_collections() { } } +size_t ShenandoahOldHeuristics::unprocessed_old_collection_candidates_live_memory() const { + return _live_bytes_in_unprocessed_candidates; +} + +void ShenandoahOldHeuristics::set_unprocessed_old_collection_candidates_live_memory(size_t initial_live) { + _live_bytes_in_unprocessed_candidates = initial_live; +} + +void ShenandoahOldHeuristics::decrease_unprocessed_old_collection_candidates_live_memory(size_t evacuated_live) { + assert(evacuated_live <= _live_bytes_in_unprocessed_candidates, "Cannot evacuate more than was present"); + _live_bytes_in_unprocessed_candidates -= evacuated_live; +} + + // TODO: Unused? uint ShenandoahOldHeuristics::last_old_collection_candidate_index() { return _last_old_collection_candidate; @@ -356,7 +463,7 @@ unsigned int ShenandoahOldHeuristics::get_coalesce_and_fill_candidates(Shenandoa while (index < end) { *buffer++ = _region_data[index++]._region; } - return _last_old_region - _next_old_collection_candidate; + return (_last_old_region - _next_old_collection_candidate); } void ShenandoahOldHeuristics::abandon_collection_candidates() { @@ -366,24 +473,31 @@ void ShenandoahOldHeuristics::abandon_collection_candidates() { } void ShenandoahOldHeuristics::handle_promotion_failure() { - if (!_promotion_failed) { - if (ShenandoahHeap::heap()->generation_sizer()->transfer_capacity(_old_generation)) { - log_info(gc)("Increased size of old generation due to promotion failure."); - } - // TODO: Increase tenuring threshold to push back on promotions. - } _promotion_failed = true; } void ShenandoahOldHeuristics::record_cycle_start() { - _promotion_failed = false; _trigger_heuristic->record_cycle_start(); } void ShenandoahOldHeuristics::record_cycle_end() { _trigger_heuristic->record_cycle_end(); + clear_triggers(); +} + +void ShenandoahOldHeuristics::trigger_old_has_grown() { + _growth_trigger = true; } + +void ShenandoahOldHeuristics::clear_triggers() { + // Clear any triggers that were set during mixed evacuations. Conditions may be different now that this phase has finished. + _promotion_failed = false; + _cannot_expand_trigger = false; + _fragmentation_trigger = false; + _growth_trigger = false; + } + bool ShenandoahOldHeuristics::should_start_gc() { // Cannot start a new old-gen GC until previous one has finished. // @@ -393,13 +507,49 @@ bool ShenandoahOldHeuristics::should_start_gc() { return false; } - // If there's been a promotion failure (and we don't have regions already scheduled for evacuation), - // start a new old generation collection. - if (_promotion_failed) { - log_info(gc)("Trigger: Promotion Failure"); + if (_cannot_expand_trigger) { + ShenandoahHeap* heap = ShenandoahHeap::heap(); + size_t old_gen_capacity = _old_generation->max_capacity(); + size_t heap_capacity = heap->capacity(); + double percent = 100.0 * ((double) old_gen_capacity) / heap_capacity; + log_info(gc)("Trigger (OLD): Expansion failure, current size: " SIZE_FORMAT "%s which is %.1f%% of total heap size", + byte_size_in_proper_unit(old_gen_capacity), proper_unit_for_byte_size(old_gen_capacity), percent); return true; } + if (_fragmentation_trigger) { + ShenandoahHeap* heap = ShenandoahHeap::heap(); + size_t used = _old_generation->used(); + size_t used_regions_size = _old_generation->used_regions_size(); + size_t used_regions = _old_generation->used_regions(); + assert(used_regions_size > used_regions, "Cannot have more used than used regions"); + size_t fragmented_free = used_regions_size - used; + double percent = 100.0 * ((double) fragmented_free) / used_regions_size; + log_info(gc)("Trigger (OLD): Old has become fragmented: " + SIZE_FORMAT "%s available bytes spread between " SIZE_FORMAT " regions (%.1f%% free)", + byte_size_in_proper_unit(fragmented_free), proper_unit_for_byte_size(fragmented_free), used_regions, percent); + return true; + } + + if (_growth_trigger) { + // Growth may be falsely triggered during mixed evacuations, before the mixed-evacuation candidates have been + // evacuated. Before acting on a false trigger, we check to confirm the trigger condition is still satisfied. + ShenandoahHeap* heap = ShenandoahHeap::heap(); + size_t current_usage = _old_generation->used(); + size_t trigger_threshold = _old_generation->usage_trigger_threshold(); + if (current_usage > trigger_threshold) { + size_t live_at_previous_old = _old_generation->get_live_bytes_after_last_mark(); + double percent_growth = 100.0 * ((double) current_usage - live_at_previous_old) / live_at_previous_old; + log_info(gc)("Trigger (OLD): Old has overgrown, live at end of previous OLD marking: " + SIZE_FORMAT "%s, current usage: " SIZE_FORMAT "%s, percent growth: %.1f%%", + byte_size_in_proper_unit(live_at_previous_old), proper_unit_for_byte_size(live_at_previous_old), + byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage), percent_growth); + return true; + } else { + _growth_trigger = false; + } + } + // Otherwise, defer to configured heuristic for gc trigger. return _trigger_heuristic->should_start_gc(); } @@ -409,14 +559,20 @@ bool ShenandoahOldHeuristics::should_degenerate_cycle() { } void ShenandoahOldHeuristics::record_success_concurrent(bool abbreviated) { + // Forget any triggers that occured while OLD GC was ongoing. If we really need to start another, it will retrigger. + clear_triggers(); _trigger_heuristic->record_success_concurrent(abbreviated); } void ShenandoahOldHeuristics::record_success_degenerated() { + // Forget any triggers that occured while OLD GC was ongoing. If we really need to start another, it will retrigger. + clear_triggers(); _trigger_heuristic->record_success_degenerated(); } void ShenandoahOldHeuristics::record_success_full() { + // Forget any triggers that occured while OLD GC was ongoing. If we really need to start another, it will retrigger. + clear_triggers(); _trigger_heuristic->record_success_full(); } diff --git a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp index f8581c2cd01..d6789cb87ec 100644 --- a/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp +++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp @@ -69,15 +69,24 @@ class ShenandoahOldHeuristics : public ShenandoahHeuristics { // the end of old final mark. uint _last_old_region; + // How much live data must be evacuated from within the unprocessed mixed evacuation candidates? + size_t _live_bytes_in_unprocessed_candidates; + // This can be the 'static' or 'adaptive' heuristic. ShenandoahHeuristics* _trigger_heuristic; + // Keep a pointer to our generation that we can use without down casting a protected member from the base class. + ShenandoahOldGeneration* _old_generation; + // Flag is set when promotion failure is detected (by gc thread), and cleared when // old generation collection begins (by control thread). volatile bool _promotion_failed; - // Keep a pointer to our generation that we can use without down casting a protected member from the base class. - ShenandoahOldGeneration* _old_generation; + // Flags are set when promotion failure is detected (by gc thread), and cleared when + // old generation collection begins (by control thread). Flags are set and cleared at safepoints. + bool _cannot_expand_trigger; + bool _fragmentation_trigger; + bool _growth_trigger; protected: virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* set, RegionData* data, size_t data_size, @@ -97,6 +106,13 @@ class ShenandoahOldHeuristics : public ShenandoahHeuristics { // How many old-collection candidates have not yet been processed? uint unprocessed_old_collection_candidates(); + // How much live memory must be evacuated from within old-collection candidates that have not yet been processed? + size_t unprocessed_old_collection_candidates_live_memory() const; + + void set_unprocessed_old_collection_candidates_live_memory(size_t initial_live); + + void decrease_unprocessed_old_collection_candidates_live_memory(size_t evacuated_live); + // How many old or hidden collection candidates have not yet been processed? uint last_old_collection_candidate_index(); @@ -122,11 +138,17 @@ class ShenandoahOldHeuristics : public ShenandoahHeuristics { // held by this heuristic for supplying mixed collections. void abandon_collection_candidates(); - // Notify the heuristic of promotion failures. The promotion attempt will be skipped and the object will - // be evacuated into the young generation. The collection should complete normally, but we want to schedule - // an old collection as soon as possible. + // Promotion failure does not currently trigger old-gen collections. Often, promotion failures occur because + // old-gen is sized too small rather than because it is necessary to collect old gen. We keep the method + // here in case we decide to feed this signal to sizing or triggering heuristics in the future. void handle_promotion_failure(); + void trigger_cannot_expand() { _cannot_expand_trigger = true; }; + void trigger_old_is_fragmented() { _fragmentation_trigger = true; } + void trigger_old_has_grown(); + + void clear_triggers(); + virtual void record_cycle_start() override; virtual void record_cycle_end() override; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.cpp b/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.cpp index c797ad21a7d..736354e9282 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.cpp @@ -90,13 +90,13 @@ void ShenandoahCollectionSet::add_region(ShenandoahHeapRegion* r) { assert(!r->is_humongous(), "Only add regular regions to the collection set"); _cset_map[r->index()] = 1; - - size_t live = r->get_live_data_bytes(); + size_t live = r->get_live_data_bytes(); size_t garbage = r->garbage(); - + size_t free = r->free(); if (r->is_young()) { _young_region_count++; _young_bytes_to_evacuate += live; + _young_available_bytes_collected += free; if (r->age() >= InitialTenuringThreshold) { _young_bytes_to_promote += live; } @@ -104,6 +104,7 @@ void ShenandoahCollectionSet::add_region(ShenandoahHeapRegion* r) { _old_region_count++; _old_bytes_to_evacuate += live; _old_garbage += garbage; + _old_available_bytes_collected += free; } _region_count++; @@ -117,6 +118,7 @@ void ShenandoahCollectionSet::add_region(ShenandoahHeapRegion* r) { void ShenandoahCollectionSet::clear() { assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at a safepoint"); + Copy::zero_to_bytes(_cset_map, _map_size); #ifdef ASSERT @@ -140,6 +142,9 @@ void ShenandoahCollectionSet::clear() { _old_region_count = 0; _old_bytes_to_evacuate = 0; + _young_available_bytes_collected = 0; + _old_available_bytes_collected = 0; + _has_old_regions = false; } diff --git a/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.hpp b/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.hpp index 112fff383ba..80a5e9dc028 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahCollectionSet.hpp @@ -66,6 +66,11 @@ class ShenandoahCollectionSet : public CHeapObj<mtGC> { // spans of time while collection set is being constructed. bool* _preselected_regions; + // When a region having memory available to be allocated is added to the collection set, the region's available memory + // should be subtracted from what's available. + size_t _young_available_bytes_collected; + size_t _old_available_bytes_collected; + shenandoah_padding(0); volatile size_t _current_index; shenandoah_padding(1); @@ -111,6 +116,10 @@ class ShenandoahCollectionSet : public CHeapObj<mtGC> { inline size_t get_young_bytes_to_be_promoted(); + size_t get_young_available_bytes_collected() { return _young_available_bytes_collected; } + + size_t get_old_available_bytes_collected() { return _old_available_bytes_collected; } + inline size_t get_old_region_count(); inline size_t get_young_region_count(); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.cpp b/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.cpp index 73e1d5dbf2c..918aff26add 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.cpp @@ -128,6 +128,12 @@ bool ShenandoahCollectorPolicy::is_at_shutdown() { return _in_shutdown.is_set(); } +// This may be called by mutator threads. We declare _success_full_gcs volatile to force the value not to be cached +// in a local register or variable by a mutator thread that is checking this value in a loop. +size_t ShenandoahCollectorPolicy::get_fullgc_count() { + return _success_full_gcs + _alloc_failure_degenerated_upgrade_to_full; +} + void ShenandoahCollectorPolicy::print_gc_stats(outputStream* out) const { out->print_cr("Under allocation pressure, concurrent cycles may cancel, and either continue cycle"); out->print_cr("under stop-the-world pause or result in stop-the-world Full GC. Increase heap size,"); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.hpp b/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.hpp index 3ca9965dbda..244663e6ae3 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahCollectorPolicy.hpp @@ -45,9 +45,9 @@ class ShenandoahCollectorPolicy : public CHeapObj<mtGC> { size_t _success_old_gcs; size_t _interrupted_old_gcs; size_t _success_degenerated_gcs; - size_t _success_full_gcs; + volatile size_t _success_full_gcs; size_t _alloc_failure_degenerated; - size_t _alloc_failure_degenerated_upgrade_to_full; + volatile size_t _alloc_failure_degenerated_upgrade_to_full; size_t _alloc_failure_full; size_t _explicit_concurrent; size_t _explicit_full; @@ -88,6 +88,8 @@ class ShenandoahCollectorPolicy : public CHeapObj<mtGC> { size_t cycle_counter() const; + size_t get_fullgc_count(); + void print_gc_stats(outputStream* out) const; }; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahConcurrentGC.cpp b/src/hotspot/share/gc/shenandoah/shenandoahConcurrentGC.cpp index 6c165ade4e3..b09b736ce6e 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahConcurrentGC.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahConcurrentGC.cpp @@ -217,28 +217,56 @@ bool ShenandoahConcurrentGC::collect(GCCause::Cause cause) { _abbreviated = true; } + // We defer generation resizing actions until after cset regions have been recycled. We do this even following an + // abbreviated cycle. if (heap->mode()->is_generational()) { + bool success; + size_t region_xfer; + const char* region_destination; + ShenandoahYoungGeneration* young_gen = heap->young_generation(); + ShenandoahGeneration* old_gen = heap->old_generation(); { - ShenandoahYoungGeneration* young_gen = heap->young_generation(); - ShenandoahGeneration* old_gen = heap->old_generation(); ShenandoahHeapLocker locker(heap->lock()); + size_t old_region_surplus = heap->get_old_region_surplus(); + size_t old_region_deficit = heap->get_old_region_deficit(); + if (old_region_surplus) { + success = heap->generation_sizer()->transfer_to_young(old_region_surplus); + region_destination = "young"; + region_xfer = old_region_surplus; + } else if (old_region_deficit) { + success = heap->generation_sizer()->transfer_to_old(old_region_deficit); + region_destination = "old"; + region_xfer = old_region_deficit; + if (!success) { + ((ShenandoahOldHeuristics *) old_gen->heuristics())->trigger_cannot_expand(); + } + } else { + region_destination = "none"; + region_xfer = 0; + success = true; + } + heap->set_old_region_surplus(0); + heap->set_old_region_deficit(0); + size_t old_usage_before_evac = heap->capture_old_usage(0); size_t old_usage_now = old_gen->used(); size_t promoted_bytes = old_usage_now - old_usage_before_evac; heap->set_previous_promotion(promoted_bytes); - - young_gen->unadjust_available(); - old_gen->unadjust_available(); - // No need to old_gen->increase_used(). - // That was done when plabs were allocated, accounting for both old evacs and promotions. - - heap->set_alloc_supplement_reserve(0); heap->set_young_evac_reserve(0); heap->set_old_evac_reserve(0); heap->reset_old_evac_expended(); heap->set_promoted_reserve(0); } + + // Report outside the heap lock + size_t young_available = young_gen->available(); + size_t old_available = old_gen->available(); + log_info(gc, ergo)("After cleanup, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: " + SIZE_FORMAT "%s, young_available: " SIZE_FORMAT "%s", + success? "successfully transferred": "failed to transfer", region_xfer, region_destination, + byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available), + byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); } return true; } @@ -733,64 +761,95 @@ void ShenandoahConcurrentGC::op_final_mark() { // been set aside to hold objects evacuated from the young-gen collection set. Conservatively, this value // equals the entire amount of live young-gen memory within the collection set, even though some of this memory // will likely be promoted. - // - // heap->get_alloc_supplement_reserve() represents the amount of old-gen memory that can be allocated during evacuation - // and update-refs phases of gc. The young evacuation reserve has already been removed from this quantity. // Has to be done after cset selection heap->prepare_concurrent_roots(); - if (!heap->collection_set()->is_empty()) { - LogTarget(Debug, gc, cset) lt; - if (lt.is_enabled()) { - ResourceMark rm; - LogStream ls(lt); - heap->collection_set()->print_on(&ls); - } + if (heap->mode()->is_generational()) { + ShenandoahGeneration* young_gen = heap->young_generation(); + size_t humongous_regions_promoted = heap->get_promotable_humongous_regions(); + size_t regular_regions_promoted_in_place = heap->get_regular_regions_promoted_in_place(); + if (!heap->collection_set()->is_empty() || (humongous_regions_promoted + regular_regions_promoted_in_place > 0)) { + // Even if the collection set is empty, we need to do evacuation if there are regions to be promoted in place. + // Concurrent evacuation takes responsibility for registering objects and setting the remembered set cards to dirty. + + LogTarget(Debug, gc, cset) lt; + if (lt.is_enabled()) { + ResourceMark rm; + LogStream ls(lt); + heap->collection_set()->print_on(&ls); + } - if (ShenandoahVerify) { - heap->verifier()->verify_before_evacuation(); - } + if (ShenandoahVerify) { + heap->verifier()->verify_before_evacuation(); + } + // TODO: we do not need to run update-references following evacuation if collection_set->is_empty(). - heap->set_evacuation_in_progress(true); - // From here on, we need to update references. - heap->set_has_forwarded_objects(true); + heap->set_evacuation_in_progress(true); + // From here on, we need to update references. + heap->set_has_forwarded_objects(true); - // Verify before arming for concurrent processing. - // Otherwise, verification can trigger stack processing. - if (ShenandoahVerify) { - heap->verifier()->verify_during_evacuation(); - } + // Verify before arming for concurrent processing. + // Otherwise, verification can trigger stack processing. + if (ShenandoahVerify) { + heap->verifier()->verify_during_evacuation(); + } - // Arm nmethods/stack for concurrent processing - ShenandoahCodeRoots::arm_nmethods(); - ShenandoahStackWatermark::change_epoch_id(); - - if (heap->mode()->is_generational()) { - // Calculate the temporary evacuation allowance supplement to young-gen memory capacity (for allocations - // and young-gen evacuations). - intptr_t adjustment = heap->get_alloc_supplement_reserve(); - size_t young_available = heap->young_generation()->adjust_available(adjustment); - // old_available is memory that can hold promotions and evacuations. Subtract out the memory that is being - // loaned for young-gen allocations or evacuations. - size_t old_available = heap->old_generation()->adjust_available(-adjustment); - - log_info(gc, ergo)("After generational memory budget adjustments, old available: " SIZE_FORMAT - "%s, young_available: " SIZE_FORMAT "%s", - byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available), - byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); - } + // Arm nmethods/stack for concurrent processing + ShenandoahCodeRoots::arm_nmethods(); + ShenandoahStackWatermark::change_epoch_id(); - if (ShenandoahPacing) { - heap->pacer()->setup_for_evac(); + if (ShenandoahPacing) { + heap->pacer()->setup_for_evac(); + } + } else { + if (ShenandoahVerify) { + heap->verifier()->verify_after_concmark(); + } + + if (VerifyAfterGC) { + Universe::verify(); + } } } else { - if (ShenandoahVerify) { - heap->verifier()->verify_after_concmark(); - } + // Not is_generational() + if (!heap->collection_set()->is_empty()) { + LogTarget(Info, gc, ergo) lt; + if (lt.is_enabled()) { + ResourceMark rm; + LogStream ls(lt); + heap->collection_set()->print_on(&ls); + } - if (VerifyAfterGC) { - Universe::verify(); + if (ShenandoahVerify) { + heap->verifier()->verify_before_evacuation(); + } + + heap->set_evacuation_in_progress(true); + // From here on, we need to update references. + heap->set_has_forwarded_objects(true); + + // Verify before arming for concurrent processing. + // Otherwise, verification can trigger stack processing. + if (ShenandoahVerify) { + heap->verifier()->verify_during_evacuation(); + } + + // Arm nmethods/stack for concurrent processing + ShenandoahCodeRoots::arm_nmethods(); + ShenandoahStackWatermark::change_epoch_id(); + + if (ShenandoahPacing) { + heap->pacer()->setup_for_evac(); + } + } else { + if (ShenandoahVerify) { + heap->verifier()->verify_after_concmark(); + } + + if (VerifyAfterGC) { + Universe::verify(); + } } } } @@ -812,6 +871,7 @@ ShenandoahConcurrentEvacThreadClosure::ShenandoahConcurrentEvacThreadClosure(Oop void ShenandoahConcurrentEvacThreadClosure::do_thread(Thread* thread) { JavaThread* const jt = JavaThread::cast(thread); StackWatermarkSet::finish_processing(jt, _oops, StackWatermarkKind::gc); + ShenandoahThreadLocalData::enable_plab_promotions(thread); } class ShenandoahConcurrentEvacUpdateThreadTask : public WorkerTask { @@ -825,6 +885,9 @@ class ShenandoahConcurrentEvacUpdateThreadTask : public WorkerTask { } void work(uint worker_id) { + Thread* worker_thread = Thread::current(); + ShenandoahThreadLocalData::enable_plab_promotions(worker_thread); + // ShenandoahEvacOOMScope has to be setup by ShenandoahContextEvacuateUpdateRootsClosure. // Otherwise, may deadlock with watermark lock ShenandoahContextEvacuateUpdateRootsClosure oops_cl; @@ -1200,7 +1263,6 @@ void ShenandoahConcurrentGC::op_final_updaterefs() { Universe::verify(); } - heap->adjust_generation_sizes(); heap->rebuild_free_set(true /*concurrent*/); } diff --git a/src/hotspot/share/gc/shenandoah/shenandoahControlThread.cpp b/src/hotspot/share/gc/shenandoah/shenandoahControlThread.cpp index 144d9095b0b..09e15a09568 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahControlThread.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahControlThread.cpp @@ -113,6 +113,7 @@ void ShenandoahControlThread::run_service() { // degenerated cycle should be 'promoted' to a full cycle. The decision to // trigger a cycle or not is evaluated on the regulator thread. ShenandoahHeuristics* global_heuristics = heap->global_generation()->heuristics(); + bool old_bootstrap_requested = false; while (!in_graceful_shutdown() && !should_terminate()) { // Figure out if we have pending requests. bool alloc_failure_pending = _alloc_failure_gc.is_set(); @@ -207,10 +208,19 @@ void ShenandoahControlThread::run_service() { // the heuristic to run a young collection so that we can evacuate some old regions. assert(!heap->is_concurrent_old_mark_in_progress(), "Should not be running mixed collections and concurrent marking"); generation = YOUNG; + } else if (_requested_generation == OLD && !old_bootstrap_requested) { + // Arrange to perform a young GC immediately followed by a bootstrap OLD GC. OLD GC typically requires more + // than twice the time required for YOUNG GC, so we run a YOUNG GC to replenish the YOUNG allocation pool before + // we start the longer OLD GC effort. + old_bootstrap_requested = true; + generation = YOUNG; } else { + // if (old_bootstrap_requested && (_requested_generation == OLD)), this starts the bootstrap GC that + // immediately follows the preparatory young GC. + // But we will abandon the planned bootstrap GC if a GLOBAL GC has been now been requested. generation = _requested_generation; + old_bootstrap_requested = false; } - // preemption was requested or this is a regular cycle cause = GCCause::_shenandoah_concurrent_gc; set_gc_mode(default_mode); @@ -391,10 +401,18 @@ void ShenandoahControlThread::run_service() { // Don't wait around if there was an allocation failure - start the next cycle immediately. if (!is_alloc_failure_gc()) { - // The timed wait is necessary because this thread has a responsibility to send - // 'alloc_words' to the pacer when it does not perform a GC. - MonitorLocker lock(&_control_lock, Mutex::_no_safepoint_check_flag); - lock.wait(ShenandoahControlIntervalMax); + if (old_bootstrap_requested) { + _requested_generation = OLD; + _requested_gc_cause = GCCause::_shenandoah_concurrent_gc; + } else { + // The timed wait is necessary because this thread has a responsibility to send + // 'alloc_words' to the pacer when it does not perform a GC. + MonitorLocker lock(&_control_lock, Mutex::_no_safepoint_check_flag); + lock.wait(ShenandoahControlIntervalMax); + } + } else { + // in case of alloc_failure, abandon any plans to do immediate OLD Bootstrap + old_bootstrap_requested = false; } } @@ -457,10 +475,11 @@ void ShenandoahControlThread::process_phase_timings(const ShenandoahHeap* heap) // | v v | // +---> Global Degen +--------------------> Full <----+ // -void ShenandoahControlThread::service_concurrent_normal_cycle(const ShenandoahHeap* heap, +void ShenandoahControlThread::service_concurrent_normal_cycle(ShenandoahHeap* heap, const ShenandoahGenerationType generation, GCCause::Cause cause) { GCIdMark gc_id_mark; + ShenandoahGeneration* the_generation = nullptr; switch (generation) { case YOUNG: { // Run a young cycle. This might or might not, have interrupted an ongoing @@ -469,44 +488,34 @@ void ShenandoahControlThread::service_concurrent_normal_cycle(const ShenandoahHe // they end up in, but we have to be sure we don't promote into any regions // that are in the cset. log_info(gc, ergo)("Start GC cycle (YOUNG)"); - service_concurrent_cycle(heap->young_generation(), cause, false); + the_generation = heap->young_generation(); + service_concurrent_cycle(the_generation, cause, false); break; } case OLD: { log_info(gc, ergo)("Start GC cycle (OLD)"); + the_generation = heap->old_generation(); service_concurrent_old_cycle(heap, cause); break; } case GLOBAL_GEN: { log_info(gc, ergo)("Start GC cycle (GLOBAL)"); - service_concurrent_cycle(heap->global_generation(), cause, false); + the_generation = heap->global_generation(); + service_concurrent_cycle(the_generation, cause, false); break; } case GLOBAL_NON_GEN: { log_info(gc, ergo)("Start GC cycle"); - service_concurrent_cycle(heap->global_generation(), cause, false); + the_generation = heap->global_generation(); + service_concurrent_cycle(the_generation, cause, false); break; } default: ShouldNotReachHere(); } - const char* msg; - if (heap->mode()->is_generational()) { - if (heap->cancelled_gc()) { - msg = (generation == YOUNG) ? "At end of Interrupted Concurrent Young GC" : - "At end of Interrupted Concurrent Bootstrap GC"; - } else { - msg = (generation == YOUNG) ? "At end of Concurrent Young GC" : - "At end of Concurrent Bootstrap GC"; - } - } else { - msg = heap->cancelled_gc() ? "At end of cancelled GC" : - "At end of GC"; - } - heap->log_heap_status(msg); } -void ShenandoahControlThread::service_concurrent_old_cycle(const ShenandoahHeap* heap, GCCause::Cause &cause) { +void ShenandoahControlThread::service_concurrent_old_cycle(ShenandoahHeap* heap, GCCause::Cause &cause) { ShenandoahOldGeneration* old_generation = heap->old_generation(); ShenandoahYoungGeneration* young_generation = heap->young_generation(); ShenandoahOldGeneration::State original_state = old_generation->state(); @@ -562,7 +571,7 @@ void ShenandoahControlThread::service_concurrent_old_cycle(const ShenandoahHeap* set_gc_mode(bootstrapping_old); young_generation->set_old_gen_task_queues(old_generation->task_queues()); ShenandoahGCSession session(cause, young_generation); - service_concurrent_cycle(heap,young_generation, cause, true); + service_concurrent_cycle(heap, young_generation, cause, true); process_phase_timings(heap); if (heap->cancelled_gc()) { // Young generation bootstrap cycle has failed. Concurrent mark for old generation @@ -588,9 +597,13 @@ void ShenandoahControlThread::service_concurrent_old_cycle(const ShenandoahHeap* if (marking_complete) { assert(old_generation->state() != ShenandoahOldGeneration::MARKING, "Should not still be marking"); if (original_state == ShenandoahOldGeneration::MARKING) { + heap->mmu_tracker()->record_old_marking_increment(old_generation, GCId::current(), true, + heap->collection_set()->has_old_regions()); heap->log_heap_status("At end of Concurrent Old Marking finishing increment"); } } else if (original_state == ShenandoahOldGeneration::MARKING) { + heap->mmu_tracker()->record_old_marking_increment(old_generation, GCId::current(), false, + heap->collection_set()->has_old_regions()); heap->log_heap_status("At end of Concurrent Old Marking increment"); } break; @@ -697,7 +710,7 @@ void ShenandoahControlThread::service_concurrent_cycle(ShenandoahGeneration* gen service_concurrent_cycle(heap, generation, cause, do_old_gc_bootstrap); } -void ShenandoahControlThread::service_concurrent_cycle(const ShenandoahHeap* heap, +void ShenandoahControlThread::service_concurrent_cycle(ShenandoahHeap* heap, ShenandoahGeneration* generation, GCCause::Cause& cause, bool do_old_gc_bootstrap) { @@ -713,6 +726,32 @@ void ShenandoahControlThread::service_concurrent_cycle(const ShenandoahHeap* hea // collection. Same for global collections. _degen_generation = generation; } + const char* msg; + if (heap->mode()->is_generational()) { + if (heap->cancelled_gc()) { + msg = (generation->is_young()) ? "At end of Interrupted Concurrent Young GC" : + "At end of Interrupted Concurrent Bootstrap GC"; + } else { + msg = (generation->is_young()) ? "At end of Concurrent Young GC" : + "At end of Concurrent Bootstrap GC"; + // We only record GC results if GC was successful + ShenandoahMmuTracker* mmu_tracker = heap->mmu_tracker(); + if (generation->is_young()) { + if (heap->collection_set()->has_old_regions()) { + bool mixed_is_done = (heap->old_heuristics()->unprocessed_old_collection_candidates() == 0); + mmu_tracker->record_mixed(generation, get_gc_id(), mixed_is_done); + } else { + mmu_tracker->record_young(generation, get_gc_id()); + } + } else { + mmu_tracker->record_bootstrap(generation, get_gc_id(), heap->collection_set()->has_old_regions()); + } + } + } else { + msg = heap->cancelled_gc() ? "At end of cancelled GC" : + "At end of GC"; + } + heap->log_heap_status(msg); } bool ShenandoahControlThread::check_cancellation_or_degen(ShenandoahGC::ShenandoahDegenPoint point) { @@ -928,7 +967,6 @@ void ShenandoahControlThread::handle_alloc_failure(ShenandoahAllocRequest& req) log_info(gc)("Failed to allocate %s, " SIZE_FORMAT "%s", req.type_string(), byte_size_in_proper_unit(req.size() * HeapWordSize), proper_unit_for_byte_size(req.size() * HeapWordSize)); - // Now that alloc failure GC is scheduled, we can abort everything else heap->cancel_gc(GCCause::_allocation_failure); } diff --git a/src/hotspot/share/gc/shenandoah/shenandoahControlThread.hpp b/src/hotspot/share/gc/shenandoah/shenandoahControlThread.hpp index f9596feeeb7..339cfa7d5de 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahControlThread.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahControlThread.hpp @@ -88,6 +88,7 @@ class ShenandoahControlThread: public ConcurrentGCThread { ShenandoahSharedFlag _preemption_requested; ShenandoahSharedFlag _gc_requested; ShenandoahSharedFlag _alloc_failure_gc; + ShenandoahSharedFlag _humongous_alloc_failure_gc; ShenandoahSharedFlag _graceful_shutdown; ShenandoahSharedFlag _do_counters_update; ShenandoahSharedFlag _force_counters_update; @@ -173,11 +174,11 @@ class ShenandoahControlThread: public ConcurrentGCThread { void prepare_for_graceful_shutdown(); bool in_graceful_shutdown(); - void service_concurrent_normal_cycle(const ShenandoahHeap* heap, + void service_concurrent_normal_cycle(ShenandoahHeap* heap, const ShenandoahGenerationType generation, GCCause::Cause cause); - void service_concurrent_old_cycle(const ShenandoahHeap* heap, + void service_concurrent_old_cycle(ShenandoahHeap* heap, GCCause::Cause &cause); void set_gc_mode(GCMode new_mode); @@ -191,7 +192,7 @@ class ShenandoahControlThread: public ConcurrentGCThread { static const char* gc_mode_name(GCMode mode); void notify_control_thread(); - void service_concurrent_cycle(const ShenandoahHeap* heap, + void service_concurrent_cycle(ShenandoahHeap* heap, ShenandoahGeneration* generation, GCCause::Cause &cause, bool do_old_gc_bootstrap); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahDegeneratedGC.cpp b/src/hotspot/share/gc/shenandoah/shenandoahDegeneratedGC.cpp index fa62f7a9fe8..0a7354b17be 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahDegeneratedGC.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahDegeneratedGC.cpp @@ -57,7 +57,11 @@ bool ShenandoahDegenGC::collect(GCCause::Cause cause) { vmop_degenerated(); ShenandoahHeap* heap = ShenandoahHeap::heap(); if (heap->mode()->is_generational()) { - heap->log_heap_status("At end of Degenerated GC"); + bool is_bootstrap_gc = heap->is_concurrent_old_mark_in_progress() && _generation->is_young(); + heap->mmu_tracker()->record_degenerated(_generation, GCId::current(), is_bootstrap_gc, + !heap->collection_set()->has_old_regions()); + const char* msg = is_bootstrap_gc? "At end of Degenerated Boostrap Old GC": "At end of Degenerated GC"; + heap->log_heap_status(msg); } return true; } @@ -272,27 +276,53 @@ void ShenandoahDegenGC::op_degenerated() { } op_cleanup_complete(); + // We defer generation resizing actions until after cset regions have been recycled. + if (heap->mode()->is_generational()) { + size_t old_region_surplus = heap->get_old_region_surplus(); + size_t old_region_deficit = heap->get_old_region_deficit(); + bool success; + size_t region_xfer; + const char* region_destination; + if (old_region_surplus) { + region_xfer = old_region_surplus; + region_destination = "young"; + success = heap->generation_sizer()->transfer_to_young(old_region_surplus); + } else if (old_region_deficit) { + region_xfer = old_region_surplus; + region_destination = "old"; + success = heap->generation_sizer()->transfer_to_old(old_region_deficit); + if (!success) { + ((ShenandoahOldHeuristics *) heap->old_generation()->heuristics())->trigger_cannot_expand(); + } + } else { + region_destination = "none"; + region_xfer = 0; + success = true; + } + + size_t young_available = heap->young_generation()->available(); + size_t old_available = heap->old_generation()->available(); + log_info(gc, ergo)("After cleanup, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: " + SIZE_FORMAT "%s, young_available: " SIZE_FORMAT "%s", + success? "successfully transferred": "failed to transfer", region_xfer, region_destination, + byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available), + byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); + + heap->set_old_region_surplus(0); + heap->set_old_region_deficit(0); + } break; default: ShouldNotReachHere(); } if (heap->mode()->is_generational()) { - // In case degeneration interrupted concurrent evacuation or update references, - // we need to clean up transient state. Otherwise, these actions have no effect. - - heap->young_generation()->unadjust_available(); - heap->old_generation()->unadjust_available(); - // No need to old_gen->increase_used(). That was done when plabs were allocated, - // accounting for both old evacs and promotions. - - heap->set_alloc_supplement_reserve(0); + // In case degeneration interrupted concurrent evacuation or update references, we need to clean up transient state. + // Otherwise, these actions have no effect. heap->set_young_evac_reserve(0); heap->set_old_evac_reserve(0); heap->reset_old_evac_expended(); heap->set_promoted_reserve(0); - - heap->adjust_generation_sizes(); } if (ShenandoahVerify) { @@ -354,7 +384,16 @@ void ShenandoahDegenGC::op_prepare_evacuation() { heap->tlabs_retire(false); } - if (!heap->collection_set()->is_empty()) { + size_t humongous_regions_promoted = heap->get_promotable_humongous_regions(); + size_t regular_regions_promoted_in_place = heap->get_regular_regions_promoted_in_place(); + if (!heap->collection_set()->is_empty() || (humongous_regions_promoted + regular_regions_promoted_in_place > 0)) { + // Even if the collection set is empty, we need to do evacuation if there are regions to be promoted in place. + // Degenerated evacuation takes responsibility for registering objects and setting the remembered set cards to dirty. + + if (ShenandoahVerify) { + heap->verifier()->verify_before_evacuation(); + } + heap->set_evacuation_in_progress(true); heap->set_has_forwarded_objects(true); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp b/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp index 3ac75079411..c8739734597 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp @@ -38,7 +38,6 @@ #include "memory/resourceArea.hpp" #include "runtime/orderAccess.hpp" - ShenandoahSetsOfFree::ShenandoahSetsOfFree(size_t max_regions, ShenandoahFreeSet* free_set) : _max(max_regions), _free_set(free_set), @@ -162,9 +161,16 @@ void ShenandoahSetsOfFree::move_to_set(size_t idx, ShenandoahFreeMemoryType new_ // During flip_to_gc: // Mutator empty => Collector // Mutator empty => Old Collector - assert (((region_capacity < _region_size_bytes) && (orig_set == Mutator) && (new_set == Collector)) || - ((region_capacity == _region_size_bytes) && (orig_set == Mutator) && (new_set == Collector || new_set == OldCollector)), - "Unexpected movement between sets"); + // At start of update refs: + // Collector => Mutator + // OldCollector Empty => Mutator + assert (((region_capacity <= _region_size_bytes) && + ((orig_set == Mutator) && (new_set == Collector)) || + ((orig_set == Collector) && (new_set == Mutator))) || + ((region_capacity == _region_size_bytes) && + ((orig_set == Mutator) && (new_set == Collector)) || + ((orig_set == OldCollector) && (new_set == Mutator)) || + (new_set == OldCollector)), "Unexpected movement between sets"); _membership[idx] = new_set; _capacity_of[orig_set] -= region_capacity; @@ -398,7 +404,6 @@ void ShenandoahSetsOfFree::assert_bounds() { } #endif - ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) : _heap(heap), _free_sets(max_regions, this) @@ -412,6 +417,7 @@ ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) : HeapWord* ShenandoahFreeSet::allocate_old_with_affiliation(ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) { shenandoah_assert_heaplocked(); + size_t rightmost = (affiliation == ShenandoahAffiliation::FREE)? _free_sets.rightmost_empty(OldCollector): _free_sets.rightmost(OldCollector); size_t leftmost = @@ -450,7 +456,19 @@ HeapWord* ShenandoahFreeSet::allocate_old_with_affiliation(ShenandoahAffiliation return nullptr; } -HeapWord* ShenandoahFreeSet::allocate_with_affiliation(ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) { +void ShenandoahFreeSet::add_old_collector_free_region(ShenandoahHeapRegion* region) { + shenandoah_assert_heaplocked(); + size_t idx = region->index(); + size_t capacity = alloc_capacity(region); + assert(_free_sets.membership(idx) == NotFree, "Regions promoted in place should not be in any free set"); + if (capacity >= PLAB::min_size() * HeapWordSize) { + _free_sets.make_free(idx, OldCollector, capacity); + _heap->augment_promo_reserve(capacity); + } +} + +HeapWord* ShenandoahFreeSet::allocate_with_affiliation(ShenandoahAffiliation affiliation, + ShenandoahAllocRequest& req, bool& in_new_region) { shenandoah_assert_heaplocked(); size_t rightmost = (affiliation == ShenandoahAffiliation::FREE)? _free_sets.rightmost_empty(Collector): _free_sets.rightmost(Collector); @@ -469,7 +487,8 @@ HeapWord* ShenandoahFreeSet::allocate_with_affiliation(ShenandoahAffiliation aff } } } - log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT, shenandoah_affiliation_name(affiliation), p2i(&req)); + log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT, + shenandoah_affiliation_name(affiliation), p2i(&req)); return nullptr; } @@ -494,15 +513,15 @@ HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& if (_heap->mode()->is_generational()) { switch (req.affiliation()) { case ShenandoahAffiliation::OLD_GENERATION: - // Note: unsigned result from adjusted_unaffiliated_regions() will never be less than zero, but it may equal zero. - if (_heap->old_generation()->adjusted_unaffiliated_regions() <= 0) { + // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero. + if (_heap->old_generation()->free_unaffiliated_regions() <= 0) { allow_new_region = false; } break; case ShenandoahAffiliation::YOUNG_GENERATION: - // Note: unsigned result from adjusted_unaffiliated_regions() will never be less than zero, but it may equal zero. - if (_heap->young_generation()->adjusted_unaffiliated_regions() <= 0) { + // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero. + if (_heap->young_generation()->free_unaffiliated_regions() <= 0) { allow_new_region = false; } break; @@ -515,7 +534,6 @@ HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& break; } } - switch (req.type()) { case ShenandoahAllocRequest::_alloc_tlab: case ShenandoahAllocRequest::_alloc_shared: { @@ -524,8 +542,9 @@ HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& ShenandoahHeapRegion* r = _heap->get_region(idx); if (_free_sets.in_free_set(idx, Mutator) && (allow_new_region || r->is_affiliated())) { // try_allocate_in() increases used if the allocation is successful. - HeapWord* result = try_allocate_in(r, req, in_new_region); - if (result != nullptr) { + HeapWord* result; + size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab)? req.min_size(): req.size(); + if ((alloc_capacity(r) >= min_size) && ((result = try_allocate_in(r, req, in_new_region)) != nullptr)) { return result; } } @@ -576,19 +595,16 @@ HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& } } } - // No dice. Can we borrow space from mutator view? if (!ShenandoahEvacReserveOverflow) { return nullptr; } - // TODO: - // if (!allow_new_region && req.is_old() && (young_generation->adjusted_unaffiliated_regions() > 0)) { - // transfer a region from young to old; - // allow_new_region = true; - // heap->set_old_evac_reserve(heap->get_old_evac_reserve() + region_size_bytes); - // } - // + if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) { + // This allows us to flip a mutator region to old_collector + allow_new_region = true; + } + // We should expand old-gen if this can prevent an old-gen evacuation failure. We don't care so much about // promotion failures since they can be mitigated in a subsequent GC pass. Would be nice to know if this // allocation request is for evacuation or promotion. Individual threads limit their use of PLAB memory for @@ -706,6 +722,9 @@ HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, Shenandoah // coalesce-and-fill processing. r->end_preemptible_coalesce_and_fill(); _heap->clear_cards_for(r); + _heap->old_generation()->increment_affiliated_region_count(); + } else { + _heap->young_generation()->increment_affiliated_region_count(); } assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom"); @@ -727,6 +746,8 @@ HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, Shenandoah // req.size() is in words, r->free() is in bytes. if (ShenandoahElasticTLAB && req.is_lab_alloc()) { if (req.type() == ShenandoahAllocRequest::_alloc_plab) { + assert(_heap->mode()->is_generational(), "PLABs are only for generational mode"); + assert(_free_sets.in_free_set(r->index(), OldCollector), "PLABS must be allocated in old_collector_free regions"); // Need to assure that plabs are aligned on multiple of card region. // Since we have Elastic TLABs, align sizes up. They may be decreased to fit in the usable // memory remaining in the region (which will also be aligned to cards). @@ -838,7 +859,7 @@ HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) { // Check if there are enough regions left to satisfy allocation. if (_heap->mode()->is_generational()) { - size_t avail_young_regions = generation->adjusted_unaffiliated_regions(); + size_t avail_young_regions = generation->free_unaffiliated_regions(); if (num > _free_sets.count(Mutator) || (num > avail_young_regions)) { return nullptr; } @@ -908,6 +929,8 @@ HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) { // While individual regions report their true use, all humongous regions are marked used in the free set. _free_sets.remove_from_free_sets(r->index()); } + _heap->young_generation()->increase_affiliated_region_count(num); + size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num; _free_sets.increase_used(Mutator, total_humongous_size); _free_sets.assert_bounds(); @@ -925,6 +948,11 @@ bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const { return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress()); } +bool ShenandoahFreeSet::can_allocate_from(size_t idx) const { + ShenandoahHeapRegion* r = _heap->get_region(idx); + return can_allocate_from(r); +} + size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const { ShenandoahHeapRegion* r = _heap->get_region(idx); return alloc_capacity(r); @@ -976,14 +1004,15 @@ void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) { size_t idx = r->index(); assert(_free_sets.in_free_set(idx, Mutator), "Should be in mutator view"); + // Note: can_allocate_from(r) means r is entirely empty assert(can_allocate_from(r), "Should not be allocated"); size_t region_capacity = alloc_capacity(r); _free_sets.move_to_set(idx, OldCollector, region_capacity); _free_sets.assert_bounds(); - - // We do not ensure that the region is no longer trash, - // relying on try_allocate_in(), which always comes next, + _heap->generation_sizer()->force_transfer_to_old(1); + _heap->augment_old_evac_reserve(region_capacity); + // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, // to recycle trash before attempting to allocate anything in the region. } @@ -997,8 +1026,7 @@ void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) { _free_sets.move_to_set(idx, Collector, region_capacity); _free_sets.assert_bounds(); - // We do not ensure that the region is no longer trash, - // relying on try_allocate_in(), which always comes next, + // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, // to recycle trash before attempting to allocate anything in the region. } @@ -1016,10 +1044,21 @@ void ShenandoahFreeSet::clear_internal() { // move some of the mutator regions into the collector set or old_collector set with the intent of packing // old_collector memory into the highest (rightmost) addresses of the heap and the collector memory into the // next highest addresses of the heap, with mutator memory consuming the lowest addresses of the heap. -void ShenandoahFreeSet::find_regions_with_alloc_capacity() { +void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions) { + old_cset_regions = 0; + young_cset_regions = 0; for (size_t idx = 0; idx < _heap->num_regions(); idx++) { ShenandoahHeapRegion* region = _heap->get_region(idx); + if (region->is_trash()) { + // Trashed regions represent regions that had been in the collection set but have not yet been "cleaned up". + if (region->is_old()) { + old_cset_regions++; + } else { + assert(region->is_young(), "Trashed region should be old or young"); + young_cset_regions++; + } + } if (region->is_alloc_allowed() || region->is_trash()) { assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set"); assert(_free_sets.in_free_set(idx, NotFree), "We are about to make region free; it should not be free already"); @@ -1044,20 +1083,124 @@ void ShenandoahFreeSet::find_regions_with_alloc_capacity() { } } -void ShenandoahFreeSet::rebuild() { +// Move no more than cset_regions from the existing Collector and OldCollector free sets to the Mutator free set. +// This is called from outside the heap lock. +void ShenandoahFreeSet::move_collector_sets_to_mutator(size_t max_xfer_regions) { + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t collector_empty_xfer = 0; + size_t collector_not_empty_xfer = 0; + size_t old_collector_empty_xfer = 0; + + // Process empty regions within the Collector free set + if ((max_xfer_regions > 0) && (_free_sets.leftmost_empty(Collector) <= _free_sets.rightmost_empty(Collector))) { + ShenandoahHeapLocker locker(_heap->lock()); + for (size_t idx = _free_sets.leftmost_empty(Collector); + (max_xfer_regions > 0) && (idx <= _free_sets.rightmost_empty(Collector)); idx++) { + if (_free_sets.in_free_set(idx, Collector) && can_allocate_from(idx)) { + _free_sets.move_to_set(idx, Mutator, region_size_bytes); + max_xfer_regions--; + collector_empty_xfer += region_size_bytes; + } + } + } + + // Process empty regions within the OldCollector free set + size_t old_collector_regions = 0; + if ((max_xfer_regions > 0) && (_free_sets.leftmost_empty(OldCollector) <= _free_sets.rightmost_empty(OldCollector))) { + ShenandoahHeapLocker locker(_heap->lock()); + for (size_t idx = _free_sets.leftmost_empty(OldCollector); + (max_xfer_regions > 0) && (idx <= _free_sets.rightmost_empty(OldCollector)); idx++) { + if (_free_sets.in_free_set(idx, OldCollector) && can_allocate_from(idx)) { + _free_sets.move_to_set(idx, Mutator, region_size_bytes); + max_xfer_regions--; + old_collector_empty_xfer += region_size_bytes; + old_collector_regions++; + } + } + if (old_collector_regions > 0) { + _heap->generation_sizer()->transfer_to_young(old_collector_regions); + } + } + + // If there are any non-empty regions within Collector set, we can also move them to the Mutator free set + if ((max_xfer_regions > 0) && (_free_sets.leftmost(Collector) <= _free_sets.rightmost(Collector))) { + ShenandoahHeapLocker locker(_heap->lock()); + for (size_t idx = _free_sets.leftmost(Collector); (max_xfer_regions > 0) && (idx <= _free_sets.rightmost(Collector)); idx++) { + size_t alloc_capacity = this->alloc_capacity(idx); + if (_free_sets.in_free_set(idx, Collector) && (alloc_capacity > 0)) { + _free_sets.move_to_set(idx, Mutator, alloc_capacity); + max_xfer_regions--; + collector_not_empty_xfer += alloc_capacity; + } + } + } + + size_t collector_xfer = collector_empty_xfer + collector_not_empty_xfer; + size_t total_xfer = collector_xfer + old_collector_empty_xfer; + log_info(gc, free)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve (" + SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)", + byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer), + byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer), + byte_size_in_proper_unit(old_collector_empty_xfer), proper_unit_for_byte_size(old_collector_empty_xfer)); +} + + +// Overwrite arguments to represent the amount of memory in each generation that is about to be recycled +void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions) { shenandoah_assert_heaplocked(); // This resets all state information, removing all regions from all sets. clear(); - log_debug(gc, free)("Rebuilding FreeSet"); // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the // mutator set otherwise. - find_regions_with_alloc_capacity(); + find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions); +} + +void ShenandoahFreeSet::rebuild(size_t young_cset_regions, size_t old_cset_regions) { + shenandoah_assert_heaplocked(); + size_t young_reserve, old_reserve; + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + + size_t old_capacity = _heap->old_generation()->max_capacity(); + size_t old_available = _heap->old_generation()->available(); + size_t old_unaffiliated_regions = _heap->old_generation()->free_unaffiliated_regions(); + size_t young_capacity = _heap->young_generation()->max_capacity(); + size_t young_available = _heap->young_generation()->available(); + size_t young_unaffiliated_regions = _heap->young_generation()->free_unaffiliated_regions(); + + old_unaffiliated_regions += old_cset_regions; + old_available += old_cset_regions * region_size_bytes; + young_unaffiliated_regions += young_cset_regions; + young_available += young_cset_regions * region_size_bytes; + + // Consult old-region surplus and deficit to make adjustments to current generation capacities and availability. + // The generation region transfers take place after we rebuild. + size_t old_region_surplus = _heap->get_old_region_surplus(); + size_t old_region_deficit = _heap->get_old_region_deficit(); + + if (old_region_surplus > 0) { + size_t xfer_bytes = old_region_surplus * region_size_bytes; + assert(old_region_surplus <= old_unaffiliated_regions, "Cannot transfer regions that are affiliated"); + old_capacity -= xfer_bytes; + old_available -= xfer_bytes; + old_unaffiliated_regions -= old_region_surplus; + young_capacity += xfer_bytes; + young_available += xfer_bytes; + young_unaffiliated_regions += old_region_surplus; + } else if (old_region_deficit > 0) { + size_t xfer_bytes = old_region_deficit * region_size_bytes; + assert(old_region_deficit <= young_unaffiliated_regions, "Cannot transfer regions that are affiliated"); + old_capacity += xfer_bytes; + old_available += xfer_bytes; + old_unaffiliated_regions += old_region_deficit; + young_capacity -= xfer_bytes;; + young_available -= xfer_bytes; + young_unaffiliated_regions -= old_region_deficit; + } // Evac reserve: reserve trailing space for evacuations, with regions reserved for old evacuations placed to the right // of regions reserved of young evacuations. - size_t young_reserve, old_reserve; if (!_heap->mode()->is_generational()) { young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve; old_reserve = 0; @@ -1070,15 +1213,32 @@ void ShenandoahFreeSet::rebuild() { // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass. young_reserve = _heap->get_young_evac_reserve(); old_reserve = _heap->get_promoted_reserve() + _heap->get_old_evac_reserve(); + assert(old_reserve <= old_available, + "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT, + _heap->get_promoted_reserve(), _heap->get_old_evac_reserve(), old_available); } else { // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults) - young_reserve = (_heap->young_generation()->max_capacity() * ShenandoahEvacReserve) / 100; - old_reserve = MAX2((_heap->old_generation()->max_capacity() * ShenandoahOldEvacReserve) / 100, - ShenandoahOldCompactionReserve * ShenandoahHeapRegion::region_size_bytes()); + young_reserve = (young_capacity * ShenandoahEvacReserve) / 100; + // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions. + // Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of + // unaffiliated regions. + old_reserve = old_available; } } - reserve_regions(young_reserve, old_reserve); + if (old_reserve > _free_sets.capacity_of(OldCollector)) { + // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector + // free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust + // the reserve downward to account for this possibility. This loss is part of the reason why the original budget + // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers. + if (old_reserve > _free_sets.capacity_of(OldCollector) + old_unaffiliated_regions * region_size_bytes) { + old_reserve = _free_sets.capacity_of(OldCollector) + old_unaffiliated_regions * region_size_bytes; + } + } + if (young_reserve > young_unaffiliated_regions * region_size_bytes) { + young_reserve = young_unaffiliated_regions * region_size_bytes; + } + reserve_regions(young_reserve, old_reserve); _free_sets.establish_alloc_bias(OldCollector); _free_sets.assert_bounds(); log_status(); @@ -1090,7 +1250,8 @@ void ShenandoahFreeSet::rebuild() { // the collector set is at least to_reserve, and the memory available for allocations within the old collector set // is at least to_reserve_old. void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old) { - for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) { + for (size_t i = _heap->num_regions(); i > 0; i--) { + size_t idx = i - 1; ShenandoahHeapRegion* r = _heap->get_region(idx); if (_free_sets.in_free_set(idx, Mutator)) { assert (!r->is_old(), "mutator_is_free regions should not be affiliated OLD"); @@ -1128,6 +1289,17 @@ void ShenandoahFreeSet::log_status() { size_t retired_young = 0; size_t retired_young_humongous = 0; size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t retired_young_waste = 0; + size_t retired_old_waste = 0; + size_t consumed_collector = 0; + size_t consumed_old_collector = 0; + size_t consumed_mutator = 0; + size_t available_old = 0; + size_t available_young = 0; + size_t available_mutator = 0; + size_t available_collector = 0; + size_t available_old_collector = 0; + char buffer[BUFFER_SIZE]; for (uint i = 0; i < BUFFER_SIZE; i++) { buffer[i] = '\0'; @@ -1151,12 +1323,21 @@ void ShenandoahFreeSet::log_status() { } if (_free_sets.in_free_set(i, Mutator)) { assert(!r->is_old(), "Old regions should not be in mutator_free set"); - buffer[idx] = (alloc_capacity(r) == region_size_bytes)? 'M': 'm'; + size_t capacity = alloc_capacity(r); + available_mutator += capacity; + consumed_mutator += region_size_bytes - capacity; + buffer[idx] = (capacity == region_size_bytes)? 'M': 'm'; } else if (_free_sets.in_free_set(i, Collector)) { assert(!r->is_old(), "Old regions should not be in collector_free set"); - buffer[idx] = (alloc_capacity(r) == region_size_bytes)? 'C': 'c'; + size_t capacity = alloc_capacity(r); + available_collector += capacity; + consumed_collector += region_size_bytes - capacity; + buffer[idx] = (capacity == region_size_bytes)? 'C': 'c'; } else if (_free_sets.in_free_set(i, OldCollector)) { - buffer[idx] = (alloc_capacity(r) == region_size_bytes)? 'O': 'o'; + size_t capacity = alloc_capacity(r); + available_old_collector += capacity; + consumed_old_collector += region_size_bytes - capacity; + buffer[idx] = (capacity == region_size_bytes)? 'O': 'o'; } else if (r->is_humongous()) { if (r->is_old()) { buffer[idx] = 'H'; @@ -1168,9 +1349,11 @@ void ShenandoahFreeSet::log_status() { } else { if (r->is_old()) { buffer[idx] = '~'; + retired_old_waste += alloc_capacity(r); retired_old += region_size_bytes; } else { buffer[idx] = '_'; + retired_young_waste += alloc_capacity(r); retired_young += region_size_bytes; } } @@ -1184,12 +1367,6 @@ void ShenandoahFreeSet::log_status() { log_info(gc, free)(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer); size_t total_young = retired_young + retired_young_humongous; size_t total_old = retired_old + retired_old_humongous; - log_info(gc, free)("Retired young: " SIZE_FORMAT "%s (including humongous: " SIZE_FORMAT "%s), old: " SIZE_FORMAT - "%s (including humongous: " SIZE_FORMAT "%s)", - byte_size_in_proper_unit(total_young), proper_unit_for_byte_size(total_young), - byte_size_in_proper_unit(retired_young_humongous), proper_unit_for_byte_size(retired_young_humongous), - byte_size_in_proper_unit(total_old), proper_unit_for_byte_size(total_old), - byte_size_in_proper_unit(retired_old_humongous), proper_unit_for_byte_size(retired_old_humongous)); } #endif diff --git a/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.hpp b/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.hpp index ef43c236eab..bbf6f1cafda 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.hpp @@ -72,7 +72,7 @@ class ShenandoahSetsOfFree { // Place region idx into free set which_set. Requires that idx is currently NotFree. void make_free(size_t idx, ShenandoahFreeMemoryType which_set, size_t region_capacity); - // Place region idx into free set new_set. Requires that idx is currently not NotFRee. + // Place region idx into free set new_set. Requires that idx is currently not NotFree. void move_to_set(size_t idx, ShenandoahFreeMemoryType new_set, size_t region_capacity); // Returns the ShenandoahFreeMemoryType affiliation of region idx, or NotFree if this region is not currently free. This does @@ -172,11 +172,20 @@ class ShenandoahFreeSet : public CHeapObj<mtGC> { void flip_to_gc(ShenandoahHeapRegion* r); void flip_to_old_gc(ShenandoahHeapRegion* r); + void adjust_bounds_for_additional_old_collector_free_region(size_t idx); + + void recompute_bounds(); + void adjust_bounds(); + bool touches_bounds(size_t num) const; + + // Used of free set represents the amount of is_mutator_free set that has been consumed since most recent rebuild. + void increase_used(size_t amount); void clear_internal(); void try_recycle_trashed(ShenandoahHeapRegion *r); bool can_allocate_from(ShenandoahHeapRegion *r) const; + bool can_allocate_from(size_t idx) const; bool has_alloc_capacity(size_t idx) const; bool has_alloc_capacity(ShenandoahHeapRegion *r) const; bool has_no_alloc_capacity(ShenandoahHeapRegion *r) const; @@ -188,7 +197,11 @@ class ShenandoahFreeSet : public CHeapObj<mtGC> { size_t alloc_capacity(size_t idx) const; void clear(); - void rebuild(); + void prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions); + void rebuild(size_t young_cset_regions, size_t old_cset_regions); + void move_collector_sets_to_mutator(size_t cset_regions); + + void add_old_collector_free_region(ShenandoahHeapRegion* region); void recycle_trash(); @@ -209,7 +222,7 @@ class ShenandoahFreeSet : public CHeapObj<mtGC> { void print_on(outputStream* out) const; - void find_regions_with_alloc_capacity(); + void find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions); void reserve_regions(size_t young_reserve, size_t old_reserve); }; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahFullGC.cpp b/src/hotspot/share/gc/shenandoah/shenandoahFullGC.cpp index 79c8b1c1345..db886618f38 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahFullGC.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahFullGC.cpp @@ -175,14 +175,21 @@ void ShenandoahFullGC::op_full(GCCause::Cause cause) { metrics.snap_after(); if (heap->mode()->is_generational()) { + heap->mmu_tracker()->record_full(heap->global_generation(), GCId::current()); heap->log_heap_status("At end of Full GC"); // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are // made valid by the time Full GC completes. - assert(heap->old_generation()->used_regions_size() <= heap->old_generation()->adjusted_capacity(), + assert(heap->old_generation()->used_regions_size() <= heap->old_generation()->max_capacity(), "Old generation affiliated regions must be less than capacity"); - assert(heap->young_generation()->used_regions_size() <= heap->young_generation()->adjusted_capacity(), + assert(heap->young_generation()->used_regions_size() <= heap->young_generation()->max_capacity(), "Young generation affiliated regions must be less than capacity"); + + assert((heap->young_generation()->used() + heap->young_generation()->get_humongous_waste()) + <= heap->young_generation()->used_regions_size(), "Young consumed can be no larger than span of affiliated regions"); + assert((heap->old_generation()->used() + heap->old_generation()->get_humongous_waste()) + <= heap->old_generation()->used_regions_size(), "Old consumed can be no larger than span of affiliated regions"); + } if (metrics.is_good_progress()) { ShenandoahHeap::heap()->notify_gc_progress(); @@ -199,11 +206,7 @@ void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) { heap->set_gc_generation(heap->global_generation()); if (heap->mode()->is_generational()) { - // Defer unadjust_available() invocations until after Full GC finishes its efforts because Full GC makes use - // of young-gen memory that may have been loaned from old-gen. - // No need for old_gen->increase_used() as this was done when plabs were allocated. - heap->set_alloc_supplement_reserve(0); heap->set_young_evac_reserve(0); heap->set_old_evac_reserve(0); heap->reset_old_evac_expended(); @@ -342,8 +345,6 @@ void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) { // Resize metaspace MetaspaceGC::compute_new_size(); - heap->adjust_generation_sizes(); - // Free worker slices for (uint i = 0; i < heap->max_workers(); i++) { delete worker_slices[i]; @@ -357,10 +358,7 @@ void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) { heap->verifier()->verify_after_fullgc(); } - // Having reclaimed all dead memory, it is now safe to restore capacities to original values. - heap->young_generation()->unadjust_available(); - heap->old_generation()->unadjust_available(); - + // Humongous regions are promoted on demand and are accounted for by normal Full GC mechanisms. if (VerifyAfterGC) { Universe::verify(); } @@ -1340,7 +1338,6 @@ class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure { account_for_region(r, _young_regions, _young_usage, _young_humongous_waste); } } - r->set_live_data(live); r->reset_alloc_metadata(); } @@ -1501,12 +1498,84 @@ void ShenandoahFullGC::phase5_epilog() { ShenandoahPostCompactClosure post_compact; heap->heap_region_iterate(&post_compact); post_compact.update_generation_usage(); - log_info(gc)("FullGC done: global usage: " SIZE_FORMAT "%s, young usage: " SIZE_FORMAT "%s, old usage: " SIZE_FORMAT "%s", - byte_size_in_proper_unit(heap->global_generation()->used()), proper_unit_for_byte_size(heap->global_generation()->used()), - byte_size_in_proper_unit(heap->young_generation()->used()), proper_unit_for_byte_size(heap->young_generation()->used()), - byte_size_in_proper_unit(heap->old_generation()->used()), proper_unit_for_byte_size(heap->old_generation()->used())); + if (heap->mode()->is_generational()) { + size_t old_usage = heap->old_generation()->used_regions_size(); + size_t old_capacity = heap->old_generation()->max_capacity(); + + assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must aligh with region size"); + assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must aligh with region size"); + + if (old_capacity > old_usage) { + size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes(); + heap->generation_sizer()->transfer_to_young(excess_old_regions); + } else if (old_capacity < old_usage) { + size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes(); + heap->generation_sizer()->transfer_to_old(old_regions_deficit); + } + + log_info(gc)("FullGC done: young usage: " SIZE_FORMAT "%s, old usage: " SIZE_FORMAT "%s", + byte_size_in_proper_unit(heap->young_generation()->used()), proper_unit_for_byte_size(heap->young_generation()->used()), + byte_size_in_proper_unit(heap->old_generation()->used()), proper_unit_for_byte_size(heap->old_generation()->used())); + } heap->collection_set()->clear(); - heap->free_set()->rebuild(); + size_t young_cset_regions, old_cset_regions; + heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions); + + // We also do not expand old generation size following Full GC because we have scrambled age populations and + // no longer have objects separated by age into distinct regions. + + // TODO: Do we need to fix FullGC so that it maintains aged segregation of objects into distinct regions? + // A partial solution would be to remember how many objects are of tenure age following Full GC, but + // this is probably suboptimal, because most of these objects will not reside in a region that will be + // selected for the next evacuation phase. + + // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion. + heap->clear_promotion_potential(); + heap->clear_promotion_in_place_potential(); + + if (heap->mode()->is_generational()) { + // Invoke this in case we are able to transfer memory from OLD to YOUNG. + heap->adjust_generation_sizes_for_next_cycle(0, 0, 0); + } + heap->free_set()->rebuild(young_cset_regions, old_cset_regions); + + // We defer generation resizing actions until after cset regions have been recycled. We do this even following an + // abbreviated cycle. + if (heap->mode()->is_generational()) { + bool success; + size_t region_xfer; + const char* region_destination; + ShenandoahYoungGeneration* young_gen = heap->young_generation(); + ShenandoahGeneration* old_gen = heap->old_generation(); + + size_t old_region_surplus = heap->get_old_region_surplus(); + size_t old_region_deficit = heap->get_old_region_deficit(); + if (old_region_surplus) { + success = heap->generation_sizer()->transfer_to_young(old_region_surplus); + region_destination = "young"; + region_xfer = old_region_surplus; + } else if (old_region_deficit) { + success = heap->generation_sizer()->transfer_to_old(old_region_deficit); + region_destination = "old"; + region_xfer = old_region_deficit; + if (!success) { + ((ShenandoahOldHeuristics *) old_gen->heuristics())->trigger_cannot_expand(); + } + } else { + region_destination = "none"; + region_xfer = 0; + success = true; + } + heap->set_old_region_surplus(0); + heap->set_old_region_deficit(0); + size_t young_available = young_gen->available(); + size_t old_available = old_gen->available(); + log_info(gc, ergo)("After cleanup, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: " + SIZE_FORMAT "%s, young_available: " SIZE_FORMAT "%s", + success? "successfully transferred": "failed to transfer", region_xfer, region_destination, + byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available), + byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); + } + heap->clear_cancelled_gc(true /* clear oom handler */); } - heap->clear_cancelled_gc(true /* clear oom handler */); } diff --git a/src/hotspot/share/gc/shenandoah/shenandoahGeneration.cpp b/src/hotspot/share/gc/shenandoah/shenandoahGeneration.cpp index 22281b3250e..3606e2cf632 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahGeneration.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahGeneration.cpp @@ -225,7 +225,6 @@ void ShenandoahGeneration::prepare_gc() { void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* heap, bool* preselected_regions, ShenandoahCollectionSet* collection_set, size_t &consumed_by_advance_promotion) { - assert(heap->mode()->is_generational(), "Only generational mode uses evacuation budgets."); size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); size_t regions_available_to_loan = 0; size_t minimum_evacuation_reserve = ShenandoahOldCompactionReserve * region_size_bytes; @@ -249,160 +248,90 @@ void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* heap, bool // Do not fill up old-gen memory with promotions. Reserve some amount of memory for compaction purposes. size_t young_evac_reserve_max = 0; - if (heap->doing_mixed_evacuations()) { - // Compute old_evacuation_reserve: how much memory are we reserving to hold the results of - // evacuating old-gen heap regions? In order to sustain a consistent pace of young-gen collections, - // the goal is to maintain a consistent value for this parameter (when the candidate set is not - // empty). This value is the minimum of: - // 1. old_gen->available() - // 2. old-gen->capacity() * ShenandoahOldEvacReserve) / 100 - // (e.g. old evacuation should be no larger than 5% of old_gen capacity) - // 3. ((young_gen->capacity * ShenandoahEvacReserve / 100) * ShenandoahOldEvacRatioPercent) / 100 - // (e.g. old evacuation should be no larger than 12% of young-gen evacuation) - old_evacuation_reserve = old_generation->available(); - // This assertion has been disabled because we expect this code to be replaced by 05/2023 - // assert(old_evacuation_reserve > minimum_evacuation_reserve, "Old-gen available has not been preserved!"); - size_t old_evac_reserve_max = old_generation->max_capacity() * ShenandoahOldEvacReserve / 100; - if (old_evac_reserve_max < old_evacuation_reserve) { - old_evacuation_reserve = old_evac_reserve_max; - } - young_evac_reserve_max = - (((young_generation->max_capacity() * ShenandoahEvacReserve) / 100) * ShenandoahOldEvacRatioPercent) / 100; - if (young_evac_reserve_max < old_evacuation_reserve) { - old_evacuation_reserve = young_evac_reserve_max; - } - } - if (minimum_evacuation_reserve > old_generation->available()) { - // Due to round-off errors during enforcement of minimum_evacuation_reserve during previous GC passes, - // there can be slight discrepancies here. - minimum_evacuation_reserve = old_generation->available(); - } + // First priority is to reclaim the easy garbage out of young-gen. - heap->set_old_evac_reserve(old_evacuation_reserve); - heap->reset_old_evac_expended(); - - // Compute the young evacuation reserve: This is how much memory is available for evacuating young-gen objects. - // We ignore the possible effect of promotions, which reduce demand for young-gen evacuation memory. - // - // TODO: We could give special treatment to the regions that have reached promotion age, because we know their - // live data is entirely eligible for promotion. This knowledge can feed both into calculations of young-gen - // evacuation reserve and promotion reserve. - // - // young_evacuation_reserve for young generation: how much memory are we reserving to hold the results - // of evacuating young collection set regions? This is typically smaller than the total amount - // of available memory, and is also smaller than the total amount of marked live memory within - // young-gen. This value is the smaller of - // - // 1. (young_gen->capacity() * ShenandoahEvacReserve) / 100 - // 2. (young_gen->available() + old_gen_memory_available_to_be_loaned - // - // ShenandoahEvacReserve represents the configured target size of the evacuation region. We can only honor - // this target if there is memory available to hold the evacuations. Memory is available if it is already - // free within young gen, or if it can be borrowed from old gen. Since we have not yet chosen the collection - // sets, we do not yet know the exact accounting of how many regions will be freed by this collection pass. - // What we do know is that there will be at least one evacuated young-gen region for each old-gen region that - // is loaned to the evacuation effort (because regions to be collected consume more memory than the compacted - // regions that will replace them). In summary, if there are old-gen regions that are available to hold the - // results of young-gen evacuations, it is safe to loan them for this purpose. At this point, we have not yet - // established a promoted_reserve. We'll do that after we choose the collection set and analyze its impact - // on available memory. - // - // We do not know the evacuation_supplement until after we have computed the collection set. It is not always - // the case that young-regions inserted into the collection set will result in net decrease of in-use regions - // because ShenandoahEvacWaste times multiplied by memory within the region may be larger than the region size. - // The problem is especially relevant to regions that have been inserted into the collection set because they have - // reached tenure age. These regions tend to have much higher utilization (e.g. 95%). These regions also offer - // a unique opportunity because we know that every live object contained within the region is elgible to be - // promoted. Thus, the following implementation treats these regions specially: - // - // 1. Before beginning collection set selection, we tally the total amount of live memory held within regions - // that are known to have reached tenure age. If this memory times ShenandoahEvacWaste is available within - // old-gen memory, establish an advance promotion reserve to hold all or some percentage of these objects. - // This advance promotion reserve is excluded from memory available for holding old-gen evacuations and cannot - // be "loaned" to young gen. - // - // 2. Tenure-aged regions are included in the collection set iff their evacuation size * ShenandoahEvacWaste fits - // within the advance promotion reserve. It is counter productive to evacuate these regions if they cannot be - // evacuated directly into old-gen memory. So if there is not sufficient memory to hold copies of their - // live data right now, we'll just let these regions remain in young for now, to be evacuated by a subsequent - // evacuation pass. - // - // 3. Next, we calculate a young-gen evacuation budget, which is the smaller of the two quantities mentioned - // above. old_gen_memory_available_to_be_loaned is calculated as: - // old_gen->available - (advance-promotion-reserve + old-gen_evacuation_reserve) - // - // 4. When choosing the collection set, special care is taken to assure that the amount of loaned memory required to - // hold the results of evacuation is smaller than the total memory occupied by the regions added to the collection - // set. We need to take these precautions because we do not know how much memory will be reclaimed by evacuation - // until after the collection set has been constructed. The algorithm is as follows: - // - // a. We feed into the algorithm (i) young available at the start of evacuation and (ii) the amount of memory - // loaned from old-gen that is available to hold the results of evacuation. - // b. As candidate regions are added into the young-gen collection set, we maintain accumulations of the amount - // of memory spanned by the collection set regions and the amount of memory that must be reserved to hold - // evacuation results (by multiplying live-data size by ShenandoahEvacWaste). We process candidate regions - // in order of decreasing amounts of garbage. We skip over (and do not include into the collection set) any - // regions that do not satisfy all of the following conditions: - // - // i. The amount of live data within the region as scaled by ShenandoahEvacWaste must fit within the - // relevant evacuation reserve (live data of old-gen regions must fit within the old-evac-reserve, live - // data of young-gen tenure-aged regions must fit within the advance promotion reserve, live data within - // other young-gen regions must fit within the youn-gen evacuation reserve). - // ii. The accumulation of memory consumed by evacuation must not exceed the accumulation of memory reclaimed - // through evacuation by more than young-gen available. - // iii. Other conditions may be enforced as appropriate for specific heuristics. - // - // Note that regions are considered for inclusion in the selection set in order of decreasing amounts of garbage. - // It is possible that a region with a larger amount of garbage will be rejected because it also has a larger - // amount of live data and some region that follows this region in candidate order is included in the collection - // set (because it has less live data and thus can fit within the evacuation limits even though it has less - // garbage). - - size_t young_evacuation_reserve = (young_generation->max_capacity() * ShenandoahEvacReserve) / 100; - // old evacuation can pack into existing partially used regions. young evacuation and loans for young allocations - // need to target regions that do not already hold any old-gen objects. Round down. - regions_available_to_loan = old_generation->free_unaffiliated_regions(); - - size_t required_evacuation_reserve; - // Memory evacuated from old-gen on this pass will be available to hold old-gen evacuations in next pass. - if (old_evacuation_reserve > minimum_evacuation_reserve) { - required_evacuation_reserve = 0; + // maximum_young_evacuation_reserve is upper bound on memory to be evacuated out of young + size_t maximum_young_evacuation_reserve = (young_generation->max_capacity() * ShenandoahEvacReserve) / 100; + size_t young_evacuation_reserve = maximum_young_evacuation_reserve; + size_t excess_young; + if (young_generation->available() > young_evacuation_reserve) { + excess_young = young_generation->available() - young_evacuation_reserve; } else { - required_evacuation_reserve = minimum_evacuation_reserve - old_evacuation_reserve; + young_evacuation_reserve = young_generation->available(); + excess_young = 0; } - - consumed_by_advance_promotion = _heuristics->select_aged_regions( - old_generation->available() - old_evacuation_reserve - required_evacuation_reserve, num_regions, preselected_regions); - size_t net_available_old_regions = - (old_generation->available() - old_evacuation_reserve - consumed_by_advance_promotion) / region_size_bytes; - - if (regions_available_to_loan > net_available_old_regions) { - regions_available_to_loan = net_available_old_regions; + size_t unaffiliated_young = young_generation->free_unaffiliated_regions() * region_size_bytes; + if (excess_young > unaffiliated_young) { + excess_young = unaffiliated_young; + } else { + // round down to multiple of region size + excess_young /= region_size_bytes; + excess_young *= region_size_bytes; + } + // excess_young is available to be transferred to OLD. Assume that OLD will not request any more than had + // already been set aside for its promotion and evacuation needs at the end of previous GC. No need to + // hold back memory for allocation runway. + + ShenandoahOldHeuristics* old_heuristics = heap->old_heuristics(); + + // maximum_old_evacuation_reserve is an upper bound on memory evacuated from old and evacuated to old (promoted). + size_t maximum_old_evacuation_reserve = + maximum_young_evacuation_reserve * ShenandoahOldEvacRatioPercent / (100 - ShenandoahOldEvacRatioPercent); + // Here's the algebra: + // TotalEvacuation = OldEvacuation + YoungEvacuation + // OldEvacuation = TotalEvacuation * (ShenandoahOldEvacRatioPercent/100) + // OldEvacuation = YoungEvacuation * (ShenandoahOldEvacRatioPercent/100)/(1 - ShenandoahOldEvacRatioPercent/100) + // OldEvacuation = YoungEvacuation * ShenandoahOldEvacRatioPercent/(100 - ShenandoahOldEvacRatioPercent) + + if (maximum_old_evacuation_reserve > old_generation->available()) { + maximum_old_evacuation_reserve = old_generation->available(); + } + + // Second priority is to reclaim garbage out of old-gen if there are old-gen collection candidates. Third priority + // is to promote as much as we have room to promote. However, if old-gen memory is in short supply, this means young + // GC is operating under "duress" and was unable to transfer the memory that we would normally expect. In this case, + // old-gen will refrain from compacting itself in order to allow a quicker young-gen cycle (by avoiding the update-refs + // through ALL of old-gen). If there is some memory available in old-gen, we will use this for promotions as promotions + // do not add to the update-refs burden of GC. + + size_t old_promo_reserve; + if (old_heuristics->unprocessed_old_collection_candidates() > 0) { + // We reserved all old-gen memory at end of previous GC to hold anticipated evacuations to old-gen. If this is + // mixed evacuation, reserve all of this memory for compaction of old-gen and do not promote. Prioritize compaction + // over promotion in order to defragment OLD so that it will be better prepared to efficiently receive promoted memory. + old_evacuation_reserve = maximum_old_evacuation_reserve; + old_promo_reserve = 0; + } else { + // Make all old-evacuation memory for promotion, but if we can't use it all for promotion, we'll allow some evacuation. + old_evacuation_reserve = 0; + old_promo_reserve = maximum_old_evacuation_reserve; } - // Otherwise, regions_available_to_loan is less than net_available_old_regions because available memory is - // scattered between multiple partially used regions. + // We see too many old-evacuation failures if we force ourselves to evacuate into regions that are not initially empty. + // So we limit the old-evacuation reserve to unfragmented memory. Even so, old-evacuation is free to fill in nooks and + // crannies within existing partially used regions and it generally tries to do so. + size_t old_free_regions = old_generation->free_unaffiliated_regions(); + size_t old_free_unfragmented = old_free_regions * region_size_bytes; + if (old_evacuation_reserve > old_free_unfragmented) { + size_t delta = old_evacuation_reserve - old_free_unfragmented; + old_evacuation_reserve -= delta; - if (young_evacuation_reserve > young_generation->available()) { - size_t short_fall = young_evacuation_reserve - young_generation->available(); - if (regions_available_to_loan * region_size_bytes >= short_fall) { - old_regions_loaned_for_young_evac = (short_fall + region_size_bytes - 1) / region_size_bytes; - regions_available_to_loan -= old_regions_loaned_for_young_evac; - } else { - old_regions_loaned_for_young_evac = regions_available_to_loan; - regions_available_to_loan = 0; - young_evacuation_reserve = young_generation->available() + old_regions_loaned_for_young_evac * region_size_bytes; - // In this case, there's no memory available for new allocations while evacuating and updating, unless we - // find more old-gen memory to borrow below. - } + // Let promo consume fragments of old-gen memory. + old_promo_reserve += delta; } - // In generational mode, we may end up choosing a young collection set that contains so many promotable objects - // that there is not sufficient space in old generation to hold the promoted objects. That is ok because we have - // assured there is sufficient space in young generation to hold the rejected promotion candidates. These rejected - // promotion candidates will presumably be promoted in a future evacuation cycle. - heap->set_young_evac_reserve(young_evacuation_reserve); collection_set->establish_preselected(preselected_regions); + consumed_by_advance_promotion = _heuristics->select_aged_regions(old_promo_reserve, num_regions, preselected_regions); + assert(consumed_by_advance_promotion <= maximum_old_evacuation_reserve, "Cannot promote more than available old-gen memory"); + if (consumed_by_advance_promotion < old_promo_reserve) { + // If we're in a global collection, this memory can be used for old evacuations + old_evacuation_reserve += old_promo_reserve - consumed_by_advance_promotion; + } + heap->set_young_evac_reserve(young_evacuation_reserve); + heap->set_old_evac_reserve(old_evacuation_reserve); + heap->set_promoted_reserve(consumed_by_advance_promotion); + + // There is no need to expand OLD because all memory used here was set aside at end of previous GC } // Having chosen the collection set, adjust the budgets for generational mode based on its composition. Note @@ -425,356 +354,92 @@ void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* heap, Shena // available that results from a decrease in memory consumed by old evacuation is not necessarily available to be loaned // to young-gen. - assert(heap->mode()->is_generational(), "Only generational mode uses evacuation budgets."); - size_t old_regions_loaned_for_young_evac, regions_available_to_loan; size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); ShenandoahOldGeneration* old_generation = heap->old_generation(); ShenandoahYoungGeneration* young_generation = heap->young_generation(); - size_t old_evacuated = collection_set->get_old_bytes_reserved_for_evacuation(); - size_t old_evacuated_committed = (size_t) (ShenandoahEvacWaste * old_evacuated); - size_t old_evacuation_reserve = heap->get_old_evac_reserve(); - // Immediate garbage found during choose_collection_set() is all young - size_t immediate_garbage = collection_set->get_immediate_trash(); - size_t old_available = old_generation->available(); - size_t young_available = young_generation->available() + immediate_garbage; - size_t loaned_regions = 0; - size_t available_loan_remnant = 0; // loaned memory that is not yet dedicated to any particular budget - - // We expect this code to be replaced by 05/01/23. - // - // assert(((consumed_by_advance_promotion * 33) / 32) >= collection_set->get_young_bytes_to_be_promoted() * ShenandoahEvacWaste, - // "Advance promotion (" SIZE_FORMAT ") should be at least young_bytes_to_be_promoted (" SIZE_FORMAT - // ")* ShenandoahEvacWaste, totalling: " SIZE_FORMAT ", within round-off errors of up to 3.125%%", - // consumed_by_advance_promotion, collection_set->get_young_bytes_to_be_promoted(), - // (size_t) (collection_set->get_young_bytes_to_be_promoted() * ShenandoahEvacWaste)); - - // assert(consumed_by_advance_promotion <= (collection_set->get_young_bytes_to_be_promoted() * ShenandoahEvacWaste * 33) / 32, - // "Round-off errors should be less than 3.125%%, consumed by advance: " SIZE_FORMAT ", promoted: " SIZE_FORMAT, - // consumed_by_advance_promotion, (size_t) (collection_set->get_young_bytes_to_be_promoted() * ShenandoahEvacWaste)); + // Preselected regions have been inserted into the collection set, so we no longer need the preselected array. collection_set->abandon_preselected(); + size_t old_evacuated = collection_set->get_old_bytes_reserved_for_evacuation(); + size_t old_evacuated_committed = (size_t) (ShenandoahOldEvacWaste * old_evacuated); + size_t old_evacuation_reserve = heap->get_old_evac_reserve(); + if (old_evacuated_committed > old_evacuation_reserve) { - // This should only happen due to round-off errors when enforcing ShenandoahEvacWaste + // This should only happen due to round-off errors when enforcing ShenandoahOldEvacWaste assert(old_evacuated_committed <= (33 * old_evacuation_reserve) / 32, "Round-off errors should be less than 3.125%%, committed: " SIZE_FORMAT ", reserved: " SIZE_FORMAT, old_evacuated_committed, old_evacuation_reserve); old_evacuated_committed = old_evacuation_reserve; + // Leave old_evac_reserve as previously configured } else if (old_evacuated_committed < old_evacuation_reserve) { - // This may happen if the old-gen collection consumes less than full budget. + // This happens if the old-gen collection consumes less than full budget. old_evacuation_reserve = old_evacuated_committed; heap->set_old_evac_reserve(old_evacuation_reserve); } - // Recompute old_regions_loaned_for_young_evac because young-gen collection set may not need all the memory - // originally reserved. - size_t young_promoted = collection_set->get_young_bytes_to_be_promoted(); - size_t young_promoted_reserve_used = (size_t) (ShenandoahEvacWaste * young_promoted); + size_t young_advance_promoted = collection_set->get_young_bytes_to_be_promoted(); + size_t young_advance_promoted_reserve_used = (size_t) (ShenandoahPromoEvacWaste * young_advance_promoted); size_t young_evacuated = collection_set->get_young_bytes_reserved_for_evacuation(); size_t young_evacuated_reserve_used = (size_t) (ShenandoahEvacWaste * young_evacuated); - // We'll invoke heap->set_young_evac_reserve() further below, after we make additional adjustments to its value - - // Adjust old_regions_loaned_for_young_evac to feed into calculations of promoted_reserve - if (young_evacuated_reserve_used > young_available) { - size_t short_fall = young_evacuated_reserve_used - young_available; - - // region_size_bytes is a power of 2. loan an integral number of regions. - size_t revised_loan_for_young_evacuation = (short_fall + region_size_bytes - 1) / region_size_bytes; - - // available_loan_remnant represents memory loaned from old-gen but not required for young evacuation. - // This is the excess loaned memory that results from rounding the required loan up to an integral number - // of heap regions. This will be dedicated to alloc_supplement below. - available_loan_remnant = (revised_loan_for_young_evacuation * region_size_bytes) - short_fall; - - // We previously loaned more than was required by young-gen evacuation. So claw some of this memory back. - old_regions_loaned_for_young_evac = revised_loan_for_young_evacuation; - loaned_regions = old_regions_loaned_for_young_evac; - } else { - // Undo the previous loan, if any. - old_regions_loaned_for_young_evac = 0; - loaned_regions = 0; - } - - size_t old_bytes_loaned_for_young_evac = old_regions_loaned_for_young_evac * region_size_bytes - available_loan_remnant; - - // Recompute regions_available_to_loan based on possible changes to old_regions_loaned_for_young_evac and - // old_evacuation_reserve. - - // Any decrease in old_regions_loaned_for_young_evac are immediately available to be loaned - // However, a change to old_evacuation_reserve() is not necessarily available to loan, because this memory may - // reside within many fragments scattered throughout old-gen. - - regions_available_to_loan = old_generation->free_unaffiliated_regions(); - size_t working_old_available = old_generation->available(); - - assert(regions_available_to_loan * region_size_bytes <= working_old_available, - "Regions available to loan must be less than available memory"); - - // fragmented_old_total is the amount of memory in old-gen beyond regions_available_to_loan that is otherwise not - // yet dedicated to a particular budget. This memory can be used for promotion_reserve. - size_t fragmented_old_total = working_old_available - regions_available_to_loan * region_size_bytes; - - // fragmented_old_usage is the memory that is dedicated to holding evacuated old-gen objects, which does not need - // to be an integral number of regions. - size_t fragmented_old_usage = old_evacuated_committed + consumed_by_advance_promotion; - - if (fragmented_old_total >= fragmented_old_usage) { - // Seems this will be rare. In this case, all of the memory required for old-gen evacuations and promotions can be - // taken from the existing fragments within old-gen. Reduce this fragmented total by this amount. - fragmented_old_total -= fragmented_old_usage; - // And reduce regions_available_to_loan by the regions dedicated to young_evac. - regions_available_to_loan -= old_regions_loaned_for_young_evac; - } else { - // In this case, we need to dedicate some of the regions_available_to_loan to hold the results of old-gen evacuations - // and promotions. - - size_t unaffiliated_memory_required_for_old = fragmented_old_usage - fragmented_old_total; - size_t unaffiliated_regions_used_by_old = (unaffiliated_memory_required_for_old + region_size_bytes - 1) / region_size_bytes; - regions_available_to_loan -= (unaffiliated_regions_used_by_old + old_regions_loaned_for_young_evac); - - size_t memory_for_promotions_and_old_evac = fragmented_old_total + unaffiliated_regions_used_by_old; - size_t memory_required_for_promotions_and_old_evac = fragmented_old_usage; - size_t excess_fragmented = memory_for_promotions_and_old_evac - memory_required_for_promotions_and_old_evac; - fragmented_old_total = excess_fragmented; - } - - // Subtract from working_old_available old_evacuated_committed and consumed_by_advance_promotion - working_old_available -= fragmented_old_usage; - // And also subtract out the regions loaned for young evacuation - working_old_available -= old_regions_loaned_for_young_evac * region_size_bytes; - - // Assure that old_evacuated_committed + old_bytes_loaned_for_young_evac >= the minimum evacuation reserve - // in order to prevent promotion reserve from violating minimum evacuation reserve. - size_t old_regions_reserved_for_alloc_supplement = 0; - size_t old_bytes_reserved_for_alloc_supplement = 0; - size_t reserved_bytes_for_future_old_evac = 0; - - old_bytes_reserved_for_alloc_supplement = available_loan_remnant; - available_loan_remnant = 0; - - // Memory that has been loaned for young evacuations and old-gen regions in the current mixed-evacuation collection - // set will be available to hold future old-gen evacuations. If this memory is less than the desired amount of memory - // set aside for old-gen compaction reserve, try to set aside additional memory so that it will be available during - // the next mixed evacuation cycle. Note that memory loaned to young-gen for allocation supplement is excluded from - // the old-gen promotion reserve. - size_t future_evac_reserve_regions = old_regions_loaned_for_young_evac + collection_set->get_old_region_count(); - size_t collected_regions = collection_set->get_young_region_count(); - - if (future_evac_reserve_regions < ShenandoahOldCompactionReserve) { - // Require that we loan more memory for holding young evacuations to assure that we have adequate reserves to receive - // old-gen evacuations during subsequent collections. Loaning this memory for an allocation supplement does not - // satisfy our needs because newly allocated objects are not necessarily counter-balanced by reclaimed collection - // set regions. - - // Put this memory into reserve by identifying it as old_regions_loaned_for_young_evac - size_t additional_regions_to_loan = ShenandoahOldCompactionReserve - future_evac_reserve_regions; - - // We can loan additional regions to be repaid from the anticipated recycling of young collection set regions - // provided that these regions are currently available within old-gen memory. - size_t collected_regions_to_loan; - if (collected_regions >= additional_regions_to_loan) { - collected_regions_to_loan = additional_regions_to_loan; - additional_regions_to_loan = 0; - } else if (collected_regions > 0) { - collected_regions_to_loan = collected_regions; - additional_regions_to_loan -= collected_regions_to_loan; - } else { - collected_regions_to_loan = 0; - } - - if (collected_regions_to_loan > 0) { - // We're evacuating at least this many regions, it's ok to use these regions for allocation supplement since - // we'll be able to repay the loan at end of this GC pass, assuming the regions are available. - if (collected_regions_to_loan > regions_available_to_loan) { - collected_regions_to_loan = regions_available_to_loan; - } - old_bytes_reserved_for_alloc_supplement += collected_regions_to_loan * region_size_bytes; - regions_available_to_loan -= collected_regions_to_loan; - loaned_regions += collected_regions_to_loan; - working_old_available -= collected_regions_to_loan * region_size_bytes; - } - - // If there's still memory that we want to exclude from the current promotion reserve, but we are unable to loan - // this memory because fully empty old-gen regions are not available, decrement the working_old_available to make - // sure that this memory is not used to hold the results of old-gen evacuation. - if (additional_regions_to_loan > regions_available_to_loan) { - size_t unloaned_regions = additional_regions_to_loan - regions_available_to_loan; - size_t unloaned_bytes = unloaned_regions * region_size_bytes; - - if (working_old_available < unloaned_bytes) { - // We're in dire straits. We won't be able to reserve all the memory that we want to make available for the - // next old-gen evacuation. We'll reserve as much of it as possible. Setting working_old_available to zero - // means there will be no promotion except for the advance promotion. Note that if some advance promotion fails, - // the object will be evacuated to young-gen so we should still end up reclaiming the entire advance promotion - // collection set. - reserved_bytes_for_future_old_evac = working_old_available; - working_old_available = 0; - } else { - reserved_bytes_for_future_old_evac = unloaned_bytes; - working_old_available -= unloaned_bytes; - } - size_t regions_reserved_for_future_old_evac = - (reserved_bytes_for_future_old_evac + region_size_bytes - 1) / region_size_bytes; - - if (regions_reserved_for_future_old_evac < regions_available_to_loan) { - regions_available_to_loan -= regions_reserved_for_future_old_evac; - } else { - regions_available_to_loan = 0; - } + assert(young_evacuated_reserve_used <= young_generation->available(), "Cannot evacuate more than is available in young"); + heap->set_young_evac_reserve(young_evacuated_reserve_used); - // Since we're in dire straits, zero out fragmented_old_total so this won't be used for promotion; - if (working_old_available > fragmented_old_total) { - working_old_available -= fragmented_old_total; + size_t old_available = old_generation->available(); + // Now that we've established the collection set, we know how much memory is really required by old-gen for evacuation + // and promotion reserves. Try shrinking OLD now in case that gives us a bit more runway for mutator allocations during + // evac and update phases. + size_t old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used; + assert(old_available >= old_consumed, "Cannot consume more than is available"); + size_t excess_old = old_available - old_consumed; + size_t unaffiliated_old_regions = old_generation->free_unaffiliated_regions(); + size_t unaffiliated_old = unaffiliated_old_regions * region_size_bytes; + assert(old_available >= unaffiliated_old, "Unaffiliated old is a subset of old available"); + + // Make sure old_evac_committed is unaffiliated + if (old_evacuated_committed > 0) { + if (unaffiliated_old > old_evacuated_committed) { + size_t giveaway = unaffiliated_old - old_evacuated_committed; + size_t giveaway_regions = giveaway / region_size_bytes; // round down + if (giveaway_regions > 0) { + excess_old = MIN2(excess_old, giveaway_regions * region_size_bytes); } else { - working_old_available = 0; + excess_old = 0; } - fragmented_old_total = 0; + } else { + excess_old = 0; } } - // Establish young_evac_reserve so that this young-gen memory is not used for new allocations, allowing the memory - // to be returned to old-gen as soon as the current collection set regions are reclaimed. - heap->set_young_evac_reserve(young_evacuated_reserve_used); - - // Limit promoted_reserve so that we can set aside memory to be loaned from old-gen to young-gen. This - // value is not "critical". If we underestimate, certain promotions will simply be deferred. If we put - // "all the rest" of old-gen memory into the promotion reserve, we'll have nothing left to loan to young-gen - // during the evac and update phases of GC. So we "limit" the sizes of the promotion budget to be the smaller of: - // - // 1. old_available - // (old_available is old_gen->available() - - // (old_evacuated_committed + consumed_by_advance_promotion + loaned_for_young_evac + reserved_for_alloc_supplement)) - // 2. young bytes reserved for evacuation (we can't promote more than young is evacuating) - size_t promotion_reserve = working_old_available; - - // We experimented with constraining promoted_reserve to be no larger than 4 times the size of previously_promoted, - // but this constraint was too limiting, resulting in failure of legitimate promotions. This was tried before we - // had special handling in place for advance promotion. We should retry now that advance promotion is handled - // specially. - - // We had also experimented with constraining promoted_reserve to be no more than young_evacuation_committed - // divided by promotion_divisor, where: - // size_t promotion_divisor = (0x02 << InitialTenuringThreshold) - 1; - // This also was found to be too limiting, resulting in failure of legitimate promotions. - // - // Both experiments were conducted in the presence of other bugs which could have been the root cause for - // the failures identified above as being "too limiting". TODO: conduct new experiments with the more limiting - // values of young_evacuation_reserved_used. - - // young_evacuation_reserve_used already excludes bytes known to be promoted, which equals consumed_by_advance_promotion - if (young_evacuated_reserve_used < promotion_reserve) { - // Shrink promotion_reserve if it is larger than the memory to be consumed by evacuating all young objects in - // collection set, including anticipated waste. There's no benefit in using a larger promotion_reserve. - // young_evacuation_reserve_used does not include live memory within tenure-aged regions. - promotion_reserve = young_evacuated_reserve_used; - } - assert(working_old_available >= promotion_reserve, "Cannot reserve for promotion more than is available"); - working_old_available -= promotion_reserve; - // Having reserved this memory for promotion, the regions are no longer available to be loaned. - size_t regions_consumed_by_promotion_reserve = (promotion_reserve + region_size_bytes - 1) / region_size_bytes; - if (regions_consumed_by_promotion_reserve > regions_available_to_loan) { - // This can happen if the promotion reserve makes use of memory that is fragmented between many partially available - // old-gen regions. - regions_available_to_loan = 0; - } else { - regions_available_to_loan -= regions_consumed_by_promotion_reserve; + // If we find that OLD has excess regions, give them back to YOUNG now to reduce likelihood we run out of allocation + // runway during evacuation and update-refs. + size_t regions_to_xfer = 0; + if (excess_old > unaffiliated_old) { + // we can give back unaffiliated_old (all of unaffiliated is excess) + if (unaffiliated_old_regions > 0) { + regions_to_xfer = unaffiliated_old_regions; + } + } else if (unaffiliated_old_regions > 0) { + // excess_old < unaffiliated old: we can give back MIN(excess_old/region_size_bytes, unaffiliated_old_regions) + size_t excess_regions = excess_old / region_size_bytes; + size_t regions_to_xfer = MIN2(excess_regions, unaffiliated_old_regions); } - log_debug(gc)("old_gen->available(): " SIZE_FORMAT " divided between promotion reserve: " SIZE_FORMAT - ", old evacuation reserve: " SIZE_FORMAT ", advance promotion reserve supplement: " SIZE_FORMAT - ", old loaned for young evacuation: " SIZE_FORMAT ", old reserved for alloc supplement: " SIZE_FORMAT, - old_generation->available(), promotion_reserve, old_evacuated_committed, consumed_by_advance_promotion, - old_regions_loaned_for_young_evac * region_size_bytes, old_bytes_reserved_for_alloc_supplement); - - promotion_reserve += consumed_by_advance_promotion; - heap->set_promoted_reserve(promotion_reserve); - - heap->reset_promoted_expended(); - if (collection_set->get_old_bytes_reserved_for_evacuation() == 0) { - // Setting old evacuation reserve to zero denotes that there is no old-gen evacuation in this pass. - heap->set_old_evac_reserve(0); + if (regions_to_xfer > 0) { + bool result = heap->generation_sizer()->transfer_to_young(regions_to_xfer); + assert(excess_old > regions_to_xfer * region_size_bytes, "Cannot xfer more than excess old"); + excess_old -= regions_to_xfer * region_size_bytes; + log_info(gc, ergo)("%s transferred " SIZE_FORMAT " excess regions to young before start of evacuation", + result? "Successfully": "Unsuccessfully", regions_to_xfer); } - size_t old_gen_usage_base = old_generation->used() - collection_set->get_old_garbage(); - heap->capture_old_usage(old_gen_usage_base); - - // Compute additional evacuation supplement, which is extra memory borrowed from old-gen that can be allocated - // by mutators while GC is working on evacuation and update-refs. This memory can be temporarily borrowed - // from old-gen allotment, then repaid at the end of update-refs from the recycled collection set. After - // we have computed the collection set based on the parameters established above, we can make additional - // loans based on our knowledge of the collection set to determine how much allocation we can allow - // during the evacuation and update-refs phases of execution. The total available supplement is the result - // of adding old_bytes_reserved_for_alloc_supplement to the smaller of: - // - // 1. regions_available_to_loan * region_size_bytes - // 2. The replenishment budget (number of regions in collection set - the number of regions already - // under lien for the young_evacuation_reserve) - // - - // Regardless of how many regions may be available to be loaned, we can loan no more regions than - // the total number of young regions to be evacuated. Call this the regions_for_runway. - - if (regions_available_to_loan > 0 && (collected_regions > loaned_regions)) { - assert(regions_available_to_loan * region_size_bytes <= working_old_available, - "regions_available_to_loan should not exceed working_old_available"); - - size_t additional_regions_to_loan = collected_regions - loaned_regions; - if (additional_regions_to_loan > regions_available_to_loan) { - additional_regions_to_loan = regions_available_to_loan; - } - loaned_regions += additional_regions_to_loan; - old_bytes_reserved_for_alloc_supplement += additional_regions_to_loan * region_size_bytes; - working_old_available -= additional_regions_to_loan * region_size_bytes; - } - size_t allocation_supplement = old_bytes_reserved_for_alloc_supplement + old_bytes_loaned_for_young_evac; - assert(allocation_supplement % ShenandoahHeapRegion::region_size_bytes() == 0, - "allocation_supplement must be multiple of region size"); - - heap->set_alloc_supplement_reserve(allocation_supplement); - - // TODO: young_available, which feeds into alloc_budget_evac_and_update is lacking memory available within - // existing young-gen regions that were not selected for the collection set. Add this in and adjust the - // log message (where it says "empty-region allocation budget"). - - - log_debug(gc)("Memory reserved for young evacuation: " SIZE_FORMAT "%s for evacuating " SIZE_FORMAT - "%s out of young available: " SIZE_FORMAT "%s", - byte_size_in_proper_unit(young_evacuated_reserve_used), - proper_unit_for_byte_size(young_evacuated_reserve_used), - byte_size_in_proper_unit(young_evacuated), proper_unit_for_byte_size(young_evacuated), - byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); - - log_debug(gc)("Memory reserved for old evacuation: " SIZE_FORMAT "%s for evacuating " SIZE_FORMAT - "%s out of old available: " SIZE_FORMAT "%s", - byte_size_in_proper_unit(old_evacuated), proper_unit_for_byte_size(old_evacuated), - byte_size_in_proper_unit(old_evacuated), proper_unit_for_byte_size(old_evacuated), - byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available)); - - size_t regular_promotion = promotion_reserve - consumed_by_advance_promotion; - size_t excess = - old_available - (old_evacuation_reserve + promotion_reserve + old_bytes_loaned_for_young_evac + allocation_supplement); - log_info(gc, ergo)("Old available: " SIZE_FORMAT "%s is partitioned into old evacuation budget: " SIZE_FORMAT - "%s, aged region promotion budget: " SIZE_FORMAT - "%s, regular region promotion budget: " SIZE_FORMAT - "%s, loaned for young evacuation: " SIZE_FORMAT - "%s, loaned for young allocations: " SIZE_FORMAT - "%s, excess: " SIZE_FORMAT "%s", - byte_size_in_proper_unit(old_available), - proper_unit_for_byte_size(old_available), - byte_size_in_proper_unit(old_evacuation_reserve), - proper_unit_for_byte_size(old_evacuation_reserve), - byte_size_in_proper_unit(consumed_by_advance_promotion), - proper_unit_for_byte_size(consumed_by_advance_promotion), - byte_size_in_proper_unit(regular_promotion), - proper_unit_for_byte_size(regular_promotion), - byte_size_in_proper_unit(old_bytes_loaned_for_young_evac), - proper_unit_for_byte_size(old_bytes_loaned_for_young_evac), - byte_size_in_proper_unit(allocation_supplement), - proper_unit_for_byte_size(allocation_supplement), - byte_size_in_proper_unit(excess), - proper_unit_for_byte_size(excess)); + // Add in the excess_old memory to hold unanticipated promotions, if any. If there are more unanticipated + // promotions than fit in reserved memory, they will be deferred until a future GC pass. + size_t total_promotion_reserve = young_advance_promoted_reserve_used + excess_old; + heap->set_promoted_reserve(total_promotion_reserve); + heap->reset_promoted_expended(); } void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) { @@ -822,7 +487,6 @@ void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) { // Budgeting parameters to compute_evacuation_budgets are passed by reference. compute_evacuation_budgets(heap, preselected_regions, collection_set, consumed_by_advance_promotion); - _heuristics->choose_collection_set(collection_set, heap->old_heuristics()); if (!collection_set->is_empty()) { // only make use of evacuation budgets when we are evacuating @@ -839,7 +503,11 @@ void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) { ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); ShenandoahHeapLocker locker(heap->lock()); - heap->free_set()->rebuild(); + size_t young_cset_regions, old_cset_regions; + + // We are preparing for evacuation. At this time, we ignore cset region tallies. + heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions); + heap->free_set()->rebuild(young_cset_regions, old_cset_regions); } heap->set_evacuation_reserve_quantities(false); } @@ -897,7 +565,7 @@ ShenandoahGeneration::ShenandoahGeneration(ShenandoahGenerationType type, _collection_thread_time_s(0.0), _affiliated_region_count(0), _humongous_waste(0), _used(0), _bytes_allocated_since_gc_start(0), _max_capacity(max_capacity), _soft_max_capacity(soft_max_capacity), - _adjusted_capacity(max_capacity), _heuristics(nullptr) { + _heuristics(nullptr) { _is_marking_complete.set(); assert(max_workers > 0, "At least one queue"); for (uint i = 0; i < max_workers; ++i) { @@ -955,6 +623,28 @@ size_t ShenandoahGeneration::decrement_affiliated_region_count() { // on read and write of _affiliated_region_count. At the end of full gc, a single thread overwrites the count with // a coherent value. _affiliated_region_count--; + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_used + _humongous_waste <= _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()), + "used + humongous cannot exceed regions"); + return _affiliated_region_count; +} + +size_t ShenandoahGeneration::increase_affiliated_region_count(size_t delta) { + shenandoah_assert_heaplocked_or_fullgc_safepoint(); + _affiliated_region_count += delta; + return _affiliated_region_count; +} + +size_t ShenandoahGeneration::decrease_affiliated_region_count(size_t delta) { + shenandoah_assert_heaplocked_or_fullgc_safepoint(); + assert(_affiliated_region_count > delta, "Affiliated region count cannot be negative"); + + _affiliated_region_count -= delta; + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_used + _humongous_waste <= _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()), + "used + humongous cannot exceed regions"); return _affiliated_region_count; } @@ -967,11 +657,11 @@ void ShenandoahGeneration::establish_usage(size_t num_regions, size_t num_bytes, void ShenandoahGeneration::increase_used(size_t bytes) { Atomic::add(&_used, bytes); -} - -void ShenandoahGeneration::decrease_used(size_t bytes) { - assert(_used >= bytes, "cannot reduce bytes used by generation below zero"); - Atomic::sub(&_used, bytes); + // This detects arithmetic wraparound on _used. Non-generational mode does not keep track of _affiliated_region_count + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_used + _humongous_waste <= _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()), + "used cannot exceed regions"); } void ShenandoahGeneration::increase_humongous_waste(size_t bytes) { @@ -982,13 +672,25 @@ void ShenandoahGeneration::increase_humongous_waste(size_t bytes) { void ShenandoahGeneration::decrease_humongous_waste(size_t bytes) { if (bytes > 0) { - assert(_humongous_waste >= bytes, "Waste cannot be negative"); assert(ShenandoahHeap::heap()->is_full_gc_in_progress() || (_humongous_waste >= bytes), "Waste (" SIZE_FORMAT ") cannot be negative (after subtracting " SIZE_FORMAT ")", _humongous_waste, bytes); Atomic::sub(&_humongous_waste, bytes); } } +void ShenandoahGeneration::decrease_used(size_t bytes) { + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_used >= bytes), "cannot reduce bytes used by generation below zero"); + Atomic::sub(&_used, bytes); + + // Non-generational mode does not maintain affiliated region counts + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() >= _used), + "Affiliated regions must hold more than what is currently used"); +} + size_t ShenandoahGeneration::used_regions() const { return _affiliated_region_count; } @@ -996,7 +698,7 @@ size_t ShenandoahGeneration::used_regions() const { size_t ShenandoahGeneration::free_unaffiliated_regions() const { size_t result = max_capacity() / ShenandoahHeapRegion::region_size_bytes(); if (_affiliated_region_count > result) { - result = 0; // If old-gen is loaning regions to young-gen, affiliated regions may exceed capacity temporarily. + result = 0; } else { result -= _affiliated_region_count; } @@ -1019,61 +721,48 @@ size_t ShenandoahGeneration::soft_available() const { return in_use > soft_capacity ? 0 : soft_capacity - in_use; } -size_t ShenandoahGeneration::adjust_available(intptr_t adjustment) { - assert(adjustment % ShenandoahHeapRegion::region_size_bytes() == 0, - "Adjustment to generation size must be multiple of region size"); - _adjusted_capacity = max_capacity() + adjustment; - return _adjusted_capacity; -} - -size_t ShenandoahGeneration::unadjust_available() { - _adjusted_capacity = max_capacity(); - return _adjusted_capacity; -} - -size_t ShenandoahGeneration::adjusted_available() const { - size_t in_use = used() + get_humongous_waste(); - size_t capacity = _adjusted_capacity; - return in_use > capacity ? 0 : capacity - in_use; -} - -size_t ShenandoahGeneration::adjusted_capacity() const { - return _adjusted_capacity; -} - -size_t ShenandoahGeneration::adjusted_unaffiliated_regions() const { - // This assertion has been disabled because we expect this code to be replaced by 05/2023 - // assert(adjusted_capacity() >= used_regions_size(), "adjusted_unaffiliated_regions() cannot return negative"); - assert((adjusted_capacity() - used_regions_size()) % ShenandoahHeapRegion::region_size_bytes() == 0, - "adjusted capacity (" SIZE_FORMAT ") and used regions size (" SIZE_FORMAT ") should be multiples of region_size_bytes", - adjusted_capacity(), used_regions_size()); - return (adjusted_capacity() - used_regions_size()) / ShenandoahHeapRegion::region_size_bytes(); -} - void ShenandoahGeneration::increase_capacity(size_t increment) { shenandoah_assert_heaplocked_or_safepoint(); - assert(_max_capacity + increment <= ShenandoahHeap::heap()->max_size_for(this), "Cannot increase generation capacity beyond maximum."); - assert(increment % ShenandoahHeapRegion::region_size_bytes() == 0, "Region-sized changes only"); - // TODO: ysr: remove this check and warning - if (increment % ShenandoahHeapRegion::region_size_bytes() != 0) { - log_warning(gc)("Increment (" INTPTR_FORMAT ") should be a multiple of region size (" SIZE_FORMAT ")", - increment, ShenandoahHeapRegion::region_size_bytes()); - } + + // We do not enforce that new capacity >= heap->max_size_for(this). The maximum generation size is treated as a rule of thumb + // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions + // in place. + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_max_capacity + increment <= ShenandoahHeap::heap()->max_capacity()), "Generation cannot be larger than heap size"); + assert(increment % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size"); _max_capacity += increment; - _adjusted_capacity += increment; + + // This detects arithmetic wraparound on _used + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() >= _used), + "Affiliated regions must hold more than what is currently used"); } void ShenandoahGeneration::decrease_capacity(size_t decrement) { shenandoah_assert_heaplocked_or_safepoint(); - assert(_max_capacity - decrement >= ShenandoahHeap::heap()->min_size_for(this), "Cannot decrease generation capacity beyond minimum."); - assert(decrement % ShenandoahHeapRegion::region_size_bytes() == 0, "Region-sized changes only"); - // TODO: ysr: remove this check and warning - if (decrement % ShenandoahHeapRegion::region_size_bytes() != 0) { - log_warning(gc)("Decrement (" INTPTR_FORMAT ") should be a multiple of region size (" SIZE_FORMAT ")", - decrement, ShenandoahHeapRegion::region_size_bytes()); - } + + // We do not enforce that new capacity >= heap->min_size_for(this). The minimum generation size is treated as a rule of thumb + // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions + // in place. + assert(decrement % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size"); + assert(_max_capacity >= decrement, "Generation capacity cannot be negative"); + _max_capacity -= decrement; - _adjusted_capacity -= decrement; + + // This detects arithmetic wraparound on _used + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() >= _used), + "Affiliated regions must hold more than what is currently used"); + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_used <= _max_capacity), "Cannot use more than capacity"); + // TODO: REMOVE IS_GLOBAL() QUALIFIER AFTER WE FIX GLOBAL AFFILIATED REGION ACCOUNTING + assert(is_global() || ShenandoahHeap::heap()->is_full_gc_in_progress() || + (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() <= _max_capacity), + "Cannot use more than capacity"); } void ShenandoahGeneration::record_success_concurrent(bool abbreviated) { diff --git a/src/hotspot/share/gc/shenandoah/shenandoahGeneration.hpp b/src/hotspot/share/gc/shenandoah/shenandoahGeneration.hpp index 160a51a443b..2bd85414280 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahGeneration.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahGeneration.hpp @@ -50,8 +50,6 @@ class ShenandoahGeneration : public CHeapObj<mtGC> { double _collection_thread_time_s; -protected: - // Usage size_t _affiliated_region_count; // How much free memory is left in the last region of humongous objects. @@ -61,13 +59,15 @@ class ShenandoahGeneration : public CHeapObj<mtGC> { // The units are bytes. The value is only changed on a safepoint or under the // heap lock. size_t _humongous_waste; + +protected: + // Usage + volatile size_t _used; volatile size_t _bytes_allocated_since_gc_start; size_t _max_capacity; size_t _soft_max_capacity; - size_t _adjusted_capacity; - ShenandoahHeuristics* _heuristics; private: @@ -117,22 +117,6 @@ class ShenandoahGeneration : public CHeapObj<mtGC> { // max heap size will cause the adaptive heuristic to run more frequent cycles. size_t soft_available() const; - // During evacuation and update-refs, some memory may be shifted between generations. In particular, memory - // may be loaned by old-gen to young-gen based on the promise the loan will be promptly repaid from the memory reclaimed - // when the current collection set is recycled. The capacity adjustment also takes into consideration memory that is - // set aside within each generation to hold the results of evacuation, but not promotion, into that region. Promotions - // into old-gen are bounded by adjusted_available() whereas evacuations into old-gen are pre-committed. - size_t adjusted_available() const; - size_t adjusted_capacity() const; - - // This is the number of FREE regions that are eligible to be affiliated with this generation according to the current - // adjusted capacity. - size_t adjusted_unaffiliated_regions() const; - - // Both of following return new value of available - size_t adjust_available(intptr_t adjustment); - size_t unadjust_available(); - size_t bytes_allocated_since_gc_start(); void reset_bytes_allocated_since_gc_start(); void increase_allocated(size_t bytes); @@ -205,6 +189,12 @@ class ShenandoahGeneration : public CHeapObj<mtGC> { // Return the updated value of affiliated_region_count size_t decrement_affiliated_region_count(); + // Return the updated value of affiliated_region_count + size_t increase_affiliated_region_count(size_t delta); + + // Return the updated value of affiliated_region_count + size_t decrease_affiliated_region_count(size_t delta); + void establish_usage(size_t num_regions, size_t num_bytes, size_t humongous_waste); void increase_used(size_t bytes); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp b/src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp index 348e1900e39..eaa51009955 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp @@ -379,8 +379,11 @@ jint ShenandoahHeap::initialize() { // Initialize to complete _marking_context->mark_complete(); + size_t young_cset_regions, old_cset_regions; - _free_set->rebuild(); + // We are initializing free set. We ignore cset region tallies. + _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions); + _free_set->rebuild(young_cset_regions, old_cset_regions); } if (AlwaysPreTouch) { @@ -519,15 +522,10 @@ void ShenandoahHeap::initialize_heuristics_generations() { _young_generation = new ShenandoahYoungGeneration(_max_workers, max_capacity_young, initial_capacity_young); _old_generation = new ShenandoahOldGeneration(_max_workers, max_capacity_old, initial_capacity_old); - _global_generation = new ShenandoahGlobalGeneration(_gc_mode->is_generational(), _max_workers, soft_max_capacity(), soft_max_capacity()); - + _global_generation = new ShenandoahGlobalGeneration(_gc_mode->is_generational(), _max_workers, max_capacity(), max_capacity()); _global_generation->initialize_heuristics(_gc_mode); - if (mode()->is_generational()) { - _young_generation->initialize_heuristics(_gc_mode); - _old_generation->initialize_heuristics(_gc_mode); - - ShenandoahEvacWaste = ShenandoahGenerationalEvacWaste; - } + _young_generation->initialize_heuristics(_gc_mode); + _old_generation->initialize_heuristics(_gc_mode); } #ifdef _MSC_VER @@ -540,6 +538,8 @@ ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : _gc_generation(nullptr), _prepare_for_old_mark(false), _initial_size(0), + _promotion_potential(0), + _promotion_in_place_potential(0), _committed(0), _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), _workers(nullptr), @@ -549,7 +549,6 @@ ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : _regions(nullptr), _affiliations(nullptr), _update_refs_iterator(this), - _alloc_supplement_reserve(0), _promoted_reserve(0), _old_evac_reserve(0), _old_evac_expended(0), @@ -581,6 +580,8 @@ ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : _gc_timer(new ConcurrentGCTimer()), _soft_ref_policy(), _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), + _old_regions_surplus(0), + _old_regions_deficit(0), _marking_context(nullptr), _bitmap_size(0), _bitmap_regions_per_slice(0), @@ -818,13 +819,6 @@ void ShenandoahHeap::set_soft_max_capacity(size_t v) { "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, min_capacity(), v, max_capacity()); Atomic::store(&_soft_max_size, v); - - if (mode()->is_generational()) { - size_t max_capacity_young = _generation_sizer.max_young_size(); - size_t min_capacity_young = _generation_sizer.min_young_size(); - size_t new_capacity_young = clamp(v, min_capacity_young, max_capacity_young); - _young_generation->set_soft_max_capacity(new_capacity_young); - } } size_t ShenandoahHeap::min_capacity() const { @@ -893,9 +887,7 @@ void ShenandoahHeap::handle_promotion_failure() { } void ShenandoahHeap::report_promotion_failure(Thread* thread, size_t size) { - // We squelch excessive reports to reduce noise in logs. Squelch enforcement is not "perfect" because - // this same code can be in-lined in multiple contexts, and each context will have its own copy of the static - // last_report_epoch and this_epoch_report_count variables. + // We squelch excessive reports to reduce noise in logs. const size_t MaxReportsPerEpoch = 4; static size_t last_report_epoch = 0; static size_t epoch_report_count = 0; @@ -915,11 +907,18 @@ void ShenandoahHeap::report_promotion_failure(Thread* thread, size_t size) { PLAB* plab = ShenandoahThreadLocalData::plab(thread); size_t words_remaining = (plab == nullptr)? 0: plab->words_remaining(); const char* promote_enabled = ShenandoahThreadLocalData::allow_plab_promotions(thread)? "enabled": "disabled"; + ShenandoahGeneration* old_gen = old_generation(); + size_t old_capacity = old_gen->max_capacity(); + size_t old_usage = old_gen->used(); + size_t old_free_regions = old_gen->free_unaffiliated_regions(); log_info(gc, ergo)("Promotion failed, size " SIZE_FORMAT ", has plab? %s, PLAB remaining: " SIZE_FORMAT - ", plab promotions %s, promotion reserve: " SIZE_FORMAT ", promotion expended: " SIZE_FORMAT, - size, plab == nullptr? "no": "yes", - words_remaining, promote_enabled, promotion_reserve, promotion_expended); + ", plab promotions %s, promotion reserve: " SIZE_FORMAT ", promotion expended: " SIZE_FORMAT + ", old capacity: " SIZE_FORMAT ", old_used: " SIZE_FORMAT ", old unaffiliated regions: " SIZE_FORMAT, + size * HeapWordSize, plab == nullptr? "no": "yes", + words_remaining * HeapWordSize, promote_enabled, promotion_reserve, promotion_expended, + old_capacity, old_usage, old_free_regions); + if ((gc_id == last_report_epoch) && (epoch_report_count >= MaxReportsPerEpoch)) { log_info(gc, ergo)("Squelching additional promotion failure reports for current epoch"); } else if (gc_id != last_report_epoch) { @@ -1029,7 +1028,6 @@ HeapWord* ShenandoahHeap::allocate_from_plab_slow(Thread* thread, size_t size, b // CAUTION: retire_plab may register the remnant filler object with the remembered set scanner without a lock. This // is safe iff it is assured that each PLAB is a whole-number multiple of card-mark memory size and each PLAB is // aligned with the start of a card's memory range. - retire_plab(plab, thread); size_t actual_size = 0; @@ -1037,7 +1035,12 @@ HeapWord* ShenandoahHeap::allocate_from_plab_slow(Thread* thread, size_t size, b // less than the remaining evacuation need. It also adjusts plab_preallocated and expend_promoted if appropriate. HeapWord* plab_buf = allocate_new_plab(min_size, cur_size, &actual_size); if (plab_buf == nullptr) { - return nullptr; + if (min_size == PLAB::min_size()) { + // Disable plab promotions for this thread because we cannot even allocate a plab of minimal size. This allows us + // to fail faster on subsequent promotion attempts. + ShenandoahThreadLocalData::disable_plab_promotions(thread); + } + return NULL; } else { ShenandoahThreadLocalData::enable_plab_retries(thread); } @@ -1056,7 +1059,6 @@ HeapWord* ShenandoahHeap::allocate_from_plab_slow(Thread* thread, size_t size, b #endif // ASSERT } plab->set_buf(plab_buf, actual_size); - if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) { return nullptr; } @@ -1154,11 +1156,93 @@ void ShenandoahHeap::coalesce_and_fill_old_regions() { parallel_heap_region_iterate(&coalesce); } -bool ShenandoahHeap::adjust_generation_sizes() { - if (mode()->is_generational()) { - return _generation_sizer.adjust_generation_sizes(); +// xfer_limit is the maximum we're able to transfer from young to old +void ShenandoahHeap::adjust_generation_sizes_for_next_cycle( + size_t xfer_limit, size_t young_cset_regions, size_t old_cset_regions) { + + // Make sure old-generation is large enough, but no larger, than is necessary to hold mixed evacuations + // and promotions if we anticipate either. + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t promo_load = get_promotion_potential(); + // The free set will reserve this amount of memory to hold young evacuations + size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100; + size_t old_reserve = 0; + size_t mixed_candidates = old_heuristics()->unprocessed_old_collection_candidates(); + bool doing_mixed = (mixed_candidates > 0); + bool doing_promotions = promo_load > 0; + + // round down + size_t max_old_region_xfer = xfer_limit / region_size_bytes; + + // We can limit the reserve to the size of anticipated promotions + size_t max_old_reserve = young_reserve * ShenandoahOldEvacRatioPercent / (100 - ShenandoahOldEvacRatioPercent); + // Here's the algebra: + // TotalEvacuation = OldEvacuation + YoungEvacuation + // OldEvacuation = TotalEvacuation*(ShenandoahOldEvacRatioPercent/100) + // OldEvacuation = YoungEvacuation * (ShenandoahOldEvacRatioPercent/100)/(1 - ShenandoahOldEvacRatioPercent/100) + // OldEvacuation = YoungEvacuation * ShenandoahOldEvacRatioPercent/(100 - ShenandoahOldEvacRatioPercent) + + size_t reserve_for_mixed, reserve_for_promo; + if (doing_mixed) { + assert(old_generation()->available() >= old_generation()->free_unaffiliated_regions() * region_size_bytes, + "Unaffiliated available must be less than total available"); + + // We want this much memory to be unfragmented in order to reliably evacuate old. This is conservative because we + // may not evacuate the entirety of unprocessed candidates in a single mixed evacuation. + size_t max_evac_need = (size_t) + (old_heuristics()->unprocessed_old_collection_candidates_live_memory() * ShenandoahOldEvacWaste); + size_t old_fragmented_available = + old_generation()->available() - old_generation()->free_unaffiliated_regions() * region_size_bytes; + reserve_for_mixed = max_evac_need + old_fragmented_available; + if (reserve_for_mixed > max_old_reserve) { + reserve_for_mixed = max_old_reserve; + } + } else { + reserve_for_mixed = 0; } - return false; + + size_t available_for_promotions = max_old_reserve - reserve_for_mixed; + if (doing_promotions) { + // We're only promoting and we have a maximum bound on the amount to be promoted + reserve_for_promo = (size_t) (promo_load * ShenandoahPromoEvacWaste); + if (reserve_for_promo > available_for_promotions) { + reserve_for_promo = available_for_promotions; + } + } else { + reserve_for_promo = 0; + } + old_reserve = reserve_for_mixed + reserve_for_promo; + assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations"); + size_t old_available = old_generation()->available() + old_cset_regions * region_size_bytes; + size_t young_available = young_generation()->available() + young_cset_regions * region_size_bytes; + size_t old_region_deficit = 0; + size_t old_region_surplus = 0; + if (old_available >= old_reserve) { + size_t old_excess = old_available - old_reserve; + size_t excess_regions = old_excess / region_size_bytes; + size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions; + size_t unaffiliated_old = unaffiliated_old_regions * region_size_bytes; + if (unaffiliated_old_regions < excess_regions) { + // We'll give only unaffiliated old to young, which is known to be less than the excess. + old_region_surplus = unaffiliated_old_regions; + } else { + // unaffiliated_old_regions > excess_regions, so we only give away the excess. + old_region_surplus = excess_regions; + } + } else { + // We need to request transfer from YOUNG. Ignore that this will directly impact young_generation()->max_capacity(), + // indirectly impacting young_reserve and old_reserve. These computations are conservative. + size_t old_need = old_reserve - old_available; + // Round up the number of regions needed from YOUNG + old_region_deficit = (old_need + region_size_bytes - 1) / region_size_bytes; + } + if (old_region_deficit > max_old_region_xfer) { + // If we're running short on young-gen memory, limit the xfer. Old-gen collection activities will be curtailed + // if the budget is smaller than desired. + old_region_deficit = max_old_region_xfer; + } + set_old_region_surplus(old_region_surplus); + set_old_region_deficit(old_region_deficit); } // Called from stubs in JIT code or interpreter @@ -1193,7 +1277,7 @@ HeapWord* ShenandoahHeap::allocate_new_plab(size_t min_size, size_t* actual_size) { ShenandoahAllocRequest req = ShenandoahAllocRequest::for_plab(min_size, word_size); // Note that allocate_memory() sets a thread-local flag to prohibit further promotions by this thread - // if we are at risk of exceeding the old-gen evacuation budget. + // if we are at risk of infringing on the old-gen evacuation budget. HeapWord* res = allocate_memory(req, false); if (res != nullptr) { *actual_size = req.actual_size(); @@ -1228,14 +1312,16 @@ HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req, bool is_p // strategy is to try again, as long as GC makes progress. // // Then, we need to make sure the allocation was retried after at least one - // Full GC, which means we want to try more than ShenandoahFullGCThreshold times. + // Full GC. size_t tries = 0; + size_t original_fullgc_count = shenandoah_policy()->get_fullgc_count(); while (result == nullptr && _progress_last_gc.is_set()) { tries++; control_thread()->handle_alloc_failure(req); result = allocate_memory_under_lock(req, in_new_region, is_promotion); } - while (result == nullptr && tries <= ShenandoahFullGCThreshold) { + while (result == nullptr && + ((shenandoah_policy()->get_fullgc_count() == original_fullgc_count) || (tries <= ShenandoahOOMGCRetries))) { tries++; control_thread()->handle_alloc_failure(req); result = allocate_memory_under_lock(req, in_new_region, is_promotion); @@ -1297,20 +1383,18 @@ HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req if (mode()->is_generational()) { if (req.affiliation() == YOUNG_GENERATION) { if (req.is_mutator_alloc()) { - size_t young_available = young_generation()->adjusted_available(); - if (requested_bytes > young_available) { - // We know this is not a GCLAB. This must be a TLAB or a shared allocation. - if (req.is_lab_alloc() && (young_available >= req.min_size())) { - try_smaller_lab_size = true; - smaller_lab_size = young_available / HeapWordSize; - } else { - // Can't allocate because even min_size() is larger than remaining young_available - log_info(gc, ergo)("Unable to shrink %s alloc request of minimum size: " SIZE_FORMAT - ", young available: " SIZE_FORMAT, - req.is_lab_alloc()? "TLAB": "shared", - HeapWordSize * (req.is_lab_alloc()? req.min_size(): req.size()), young_available); - return nullptr; - } + size_t young_words_available = young_generation()->available() / HeapWordSize; + if (ShenandoahElasticTLAB && req.is_lab_alloc() && (req.min_size() < young_words_available)) { + // Allow ourselves to try a smaller lab size even if requested_bytes <= young_available. We may need a smaller + // lab size because young memory has become too fragmented. + try_smaller_lab_size = true; + smaller_lab_size = (young_words_available < req.size())? young_words_available: req.size(); + } else if (req.size() > young_words_available) { + // Can't allocate because even min_size() is larger than remaining young_available + log_info(gc, ergo)("Unable to shrink %s alloc request of minimum size: " SIZE_FORMAT + ", young words available: " SIZE_FORMAT, req.type_string(), + HeapWordSize * (req.is_lab_alloc()? req.min_size(): req.size()), young_words_available); + return nullptr; } } } else { // reg.affiliation() == OLD_GENERATION @@ -1351,66 +1435,83 @@ HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req } } // This ends the is_generational() block - if (!try_smaller_lab_size) { - result = (allow_allocation)? _free_set->allocate(req, in_new_region): nullptr; - if (result != nullptr) { - if (req.is_old()) { - ShenandoahThreadLocalData::reset_plab_promoted(thread); - if (req.is_gc_alloc()) { - if (req.type() == ShenandoahAllocRequest::_alloc_plab) { - if (promotion_eligible) { - size_t actual_size = req.actual_size() * HeapWordSize; + // First try the original request. If TLAB request size is greater than available, allocate() will attempt to downsize + // request to fit within available memory. + result = (allow_allocation)? _free_set->allocate(req, in_new_region): nullptr; + if (result != nullptr) { + if (req.is_old()) { + ShenandoahThreadLocalData::reset_plab_promoted(thread); + if (req.is_gc_alloc()) { + bool disable_plab_promotions = false; + if (req.type() == ShenandoahAllocRequest::_alloc_plab) { + if (promotion_eligible) { + size_t actual_size = req.actual_size() * HeapWordSize; + // The actual size of the allocation may be larger than the requested bytes (due to alignment on card boundaries). + // If this puts us over our promotion budget, we need to disable future PLAB promotions for this thread. + if (get_promoted_expended() + actual_size <= get_promoted_reserve()) { // Assume the entirety of this PLAB will be used for promotion. This prevents promotion from overreach. // When we retire this plab, we'll unexpend what we don't really use. ShenandoahThreadLocalData::enable_plab_promotions(thread); expend_promoted(actual_size); - // This assert has been disabled because we expect this code to be replaced by 05/2023. - // assert(get_promoted_expended() <= get_promoted_reserve(), "Do not expend more promotion than budgeted"); + assert(get_promoted_expended() <= get_promoted_reserve(), "Do not expend more promotion than budgeted"); ShenandoahThreadLocalData::set_plab_preallocated_promoted(thread, actual_size); } else { - // Disable promotions in this thread because entirety of this PLAB must be available to hold old-gen evacuations. - ShenandoahThreadLocalData::disable_plab_promotions(thread); - ShenandoahThreadLocalData::set_plab_preallocated_promoted(thread, 0); + disable_plab_promotions = true; } - } else if (is_promotion) { - // Shared promotion. Assume size is requested_bytes. - expend_promoted(requested_bytes); - assert(get_promoted_expended() <= get_promoted_reserve(), "Do not expend more promotion than budgeted"); + } else { + disable_plab_promotions = true; } + if (disable_plab_promotions) { + // Disable promotions in this thread because entirety of this PLAB must be available to hold old-gen evacuations. + ShenandoahThreadLocalData::disable_plab_promotions(thread); + ShenandoahThreadLocalData::set_plab_preallocated_promoted(thread, 0); + } + } else if (is_promotion) { + // Shared promotion. Assume size is requested_bytes. + expend_promoted(requested_bytes); + assert(get_promoted_expended() <= get_promoted_reserve(), "Do not expend more promotion than budgeted"); } - - // Register the newly allocated object while we're holding the global lock since there's no synchronization - // built in to the implementation of register_object(). There are potential races when multiple independent - // threads are allocating objects, some of which might span the same card region. For example, consider - // a card table's memory region within which three objects are being allocated by three different threads: - // - // objects being "concurrently" allocated: - // [-----a------][-----b-----][--------------c------------------] - // [---- card table memory range --------------] - // - // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a - // wants to set the has-object, first-start, and last-start attributes of the preceding card region. - // allocation of object b wants to set the has-object, first-start, and last-start attributes of this card region. - // allocation of object c also wants to set the has-object, first-start, and last-start attributes of this card region. - // - // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as - // last-start representing object b while first-start represents object c. This is why we need to require all - // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. - ShenandoahHeap::heap()->card_scan()->register_object(result); - } - } else { - // The allocation failed. If this was a plab allocation, We've already retired it and no longer have a plab. - if (req.is_old() && req.is_gc_alloc() && - (req.type() == ShenandoahAllocRequest::_alloc_plab)) { - // We don't need to disable PLAB promotions because there is no PLAB. We leave promotions enabled because - // this allows the surrounding infrastructure to retry alloc_plab_slow() with a smaller PLAB size. - ShenandoahThreadLocalData::set_plab_preallocated_promoted(thread, 0); } + + // Register the newly allocated object while we're holding the global lock since there's no synchronization + // built in to the implementation of register_object(). There are potential races when multiple independent + // threads are allocating objects, some of which might span the same card region. For example, consider + // a card table's memory region within which three objects are being allocated by three different threads: + // + // objects being "concurrently" allocated: + // [-----a------][-----b-----][--------------c------------------] + // [---- card table memory range --------------] + // + // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a + // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. + // allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. + // allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this + // card region. + // + // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as + // last-start representing object b while first-start represents object c. This is why we need to require all + // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. + ShenandoahHeap::heap()->card_scan()->register_object(result); + } + } else { + // The allocation failed. If this was a plab allocation, We've already retired it and no longer have a plab. + if (req.is_old() && req.is_gc_alloc() && (req.type() == ShenandoahAllocRequest::_alloc_plab)) { + // We don't need to disable PLAB promotions because there is no PLAB. We leave promotions enabled because + // this allows the surrounding infrastructure to retry alloc_plab_slow() with a smaller PLAB size. + ShenandoahThreadLocalData::set_plab_preallocated_promoted(thread, 0); } + } + if ((result != nullptr) || !try_smaller_lab_size) { return result; } - // else, try_smaller_lab_size is true so we fall through and recurse with a smaller lab size - } // This closes the block that holds the heap lock. This releases the lock. + // else, fall through to try_smaller_lab_size + } // This closes the block that holds the heap lock, releasing the lock. + + // We failed to allocate the originally requested lab size. Let's see if we can allocate a smaller lab size. + if (req.size() == smaller_lab_size) { + // If we were already trying to allocate min size, no value in attempting to repeat the same. End the recursion. + return nullptr; + } // We arrive here if the tlab allocation request can be resized to fit within young_available assert((req.affiliation() == YOUNG_GENERATION) && req.is_lab_alloc() && req.is_mutator_alloc() && @@ -1589,31 +1690,41 @@ class ShenandoahGenerationalEvacuationTask : public WorkerTask { void do_work() { ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); ShenandoahHeapRegion* r; + ShenandoahMarkingContext* const ctx = ShenandoahHeap::heap()->marking_context(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t old_garbage_threshold = (region_size_bytes * ShenandoahOldGarbageThreshold) / 100; while ((r = _regions->next()) != nullptr) { - log_debug(gc)("GenerationalEvacuationTask do_work(), looking at %s region " SIZE_FORMAT ", (age: %d) [%s, %s]", + log_debug(gc)("GenerationalEvacuationTask do_work(), looking at %s region " SIZE_FORMAT ", (age: %d) [%s, %s, %s]", r->is_old()? "old": r->is_young()? "young": "free", r->index(), r->age(), r->is_active()? "active": "inactive", - r->is_humongous()? (r->is_humongous_start()? "humongous_start": "humongous_continuation"): "regular"); + r->is_humongous()? (r->is_humongous_start()? "humongous_start": "humongous_continuation"): "regular", + r->is_cset()? "cset": "not-cset"); + if (r->is_cset()) { assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); _sh->marked_object_iterate(r, &cl); if (ShenandoahPacing) { _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); } - } else if (r->is_young() && r->is_active() && r->is_humongous_start() && (r->age() > InitialTenuringThreshold)) { - // We promote humongous_start regions along with their affiliated continuations during evacuation rather than - // doing this work during a safepoint. We cannot put humongous regions into the collection set because that - // triggers the load-reference barrier (LRB) to copy on reference fetch. - if (r->promote_humongous() == 0) { - // We chose not to promote because old-gen is out of memory. Report and handle the promotion failure because - // this suggests need for expanding old-gen and/or performing collection of old-gen. - ShenandoahHeap* heap = ShenandoahHeap::heap(); - oop obj = cast_to_oop(r->bottom()); - size_t size = obj->size(); - Thread* thread = Thread::current(); - heap->report_promotion_failure(thread, size); - heap->handle_promotion_failure(); + } else if (r->is_young() && r->is_active() && (r->age() >= InitialTenuringThreshold)) { + HeapWord* tams = ctx->top_at_mark_start(r); + if (r->is_humongous_start()) { + // We promote humongous_start regions along with their affiliated continuations during evacuation rather than + // doing this work during a safepoint. We cannot put humongous regions into the collection set because that + // triggers the load-reference barrier (LRB) to copy on reference fetch. + r->promote_humongous(); + } else if (r->is_regular() && (r->garbage_before_padded_for_promote() < old_garbage_threshold) && (r->get_top_before_promote() == tams)) { + // Likewise, we cannot put promote-in-place regions into the collection set because that would also trigger + // the LRB to copy on reference fetch. + r->promote_in_place(); } + // Aged humongous continuation regions are handled with their start region. If an aged regular region has + // more garbage than ShenandoahOldGarbageTrheshold, we'll promote by evacuation. If there is room for evacuation + // in this cycle, the region will be in the collection set. If there is not room, the region will be promoted + // by evacuation in some future GC cycle. + + // If an aged regular region has received allocations during the current cycle, we do not promote because the + // newly allocated objects do not have appropriate age; this region's age will be reset to zero at end of cycle. } // else, region is free, or OLD, or not in collection set, or humongous_continuation, // or is young humongous_start that is too young to be promoted @@ -1812,7 +1923,7 @@ void ShenandoahHeap::set_young_lab_region_flags() { size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { if (ShenandoahElasticTLAB) { if (mode()->is_generational()) { - return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->adjusted_available()); + return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->available()); } else { // With Elastic TLABs, return the max allowed size, and let the allocation path // figure out the safe size for current allocation. @@ -1900,24 +2011,16 @@ void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* shenandoah_policy()->record_cycle_start(); generation->heuristics()->record_cycle_start(); - - // When a cycle starts, attribute any thread activity when the collector - // is idle to the global generation. - _mmu_tracker.record(global_generation()); } void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { generation->heuristics()->record_cycle_end(); - if (mode()->is_generational() && (generation->is_global() || upgraded_to_full())) { // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well young_generation()->heuristics()->record_cycle_end(); old_generation()->heuristics()->record_cycle_end(); } set_gc_cause(GCCause::_no_gc); - - // When a cycle ends, the thread activity is attributed to the respective generation - _mmu_tracker.record(generation); } void ShenandoahHeap::verify(VerifyOption vo) { @@ -2676,6 +2779,16 @@ class ShenandoahUpdateHeapRefsTask : public WorkerTask { template<class T> void do_work(uint worker_id) { T cl; + if (CONCURRENT && (worker_id == 0)) { + // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the + // results of evacuation. These reserves are no longer necessary because evacuation has completed. + size_t cset_regions = _heap->collection_set()->count(); + // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled, because + // we need the reclaimed collection set regions to replenish the collector reserves + _heap->free_set()->move_collector_sets_to_mutator(cset_regions); + } + // If !CONCURRENT, there's no value in expanding Mutator free set + ShenandoahHeapRegion* r = _regions->next(); // We update references for global, old, and young collections. assert(_heap->active_generation()->is_mark_complete(), "Expected complete marking"); @@ -2938,12 +3051,58 @@ void ShenandoahHeap::update_heap_region_states(bool concurrent) { } void ShenandoahHeap::rebuild_free_set(bool concurrent) { - { - ShenandoahGCPhase phase(concurrent ? - ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : - ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); - ShenandoahHeapLocker locker(lock()); - _free_set->rebuild(); + ShenandoahGCPhase phase(concurrent ? + ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : + ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + ShenandoahHeapLocker locker(lock()); + size_t young_cset_regions, old_cset_regions; + _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions); + + if (mode()->is_generational()) { + assert(verify_generation_usage(true, old_generation()->used_regions(), + old_generation()->used(), old_generation()->get_humongous_waste(), + true, young_generation()->used_regions(), + young_generation()->used(), young_generation()->get_humongous_waste()), + "Generation accounts are inaccurate"); + + // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this + // available for transfer to old. Note that transfer of humongous regions does not impact available. + size_t allocation_runway = young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); + adjust_generation_sizes_for_next_cycle(allocation_runway, young_cset_regions, old_cset_regions); + + // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available + // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular + // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation + // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. + // + // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides + // within partially consumed regions of memory. + } + // Rebuild free set based on adjusted generation sizes. + _free_set->rebuild(young_cset_regions, old_cset_regions); + + if (mode()->is_generational()) { + size_t old_available = old_generation()->available(); + size_t old_unaffiliated_available = old_generation()->free_unaffiliated_regions() * region_size_bytes; + size_t old_fragmented_available; + assert(old_available >= old_unaffiliated_available, "unaffiliated available is a subset of total available"); + old_fragmented_available = old_available - old_unaffiliated_available; + + size_t old_capacity = old_generation()->max_capacity(); + size_t heap_capacity = capacity(); + if ((old_capacity > heap_capacity / 8) && (old_fragmented_available > old_capacity / 8)) { + ((ShenandoahOldHeuristics *) old_generation()->heuristics())->trigger_old_is_fragmented(); + } + + size_t old_used = old_generation()->used() + old_generation()->get_humongous_waste(); + size_t trigger_threshold = old_generation()->usage_trigger_threshold(); + // Detects unsigned arithmetic underflow + assert(old_used < ShenandoahHeap::heap()->capacity(), "Old used must be less than heap capacity"); + + if (old_used > trigger_threshold) { + ((ShenandoahOldHeuristics *) old_generation()->heuristics())->trigger_old_has_grown(); + } } } @@ -3187,6 +3346,57 @@ void ShenandoahGenerationRegionClosure<GLOBAL_NON_GEN>::heap_region_do(Shenandoa _cl->heap_region_do(region); } +bool ShenandoahHeap::verify_generation_usage(bool verify_old, size_t old_regions, size_t old_bytes, size_t old_waste, + bool verify_young, size_t young_regions, size_t young_bytes, size_t young_waste) { + size_t tally_old_regions = 0; + size_t tally_old_bytes = 0; + size_t tally_old_waste = 0; + size_t tally_young_regions = 0; + size_t tally_young_bytes = 0; + size_t tally_young_waste = 0; + + shenandoah_assert_heaplocked_or_safepoint(); + for (size_t i = 0; i < num_regions(); i++) { + ShenandoahHeapRegion* r = get_region(i); + if (r->is_old()) { + tally_old_regions++; + tally_old_bytes += r->used(); + if (r->is_humongous()) { + ShenandoahHeapRegion* start = r->humongous_start_region(); + HeapWord* obj_addr = start->bottom(); + oop obj = cast_to_oop(obj_addr); + size_t word_size = obj->size(); + HeapWord* end_addr = obj_addr + word_size; + if (end_addr <= r->end()) { + tally_old_waste += (r->end() - end_addr) * HeapWordSize; + } + } + } else if (r->is_young()) { + tally_young_regions++; + tally_young_bytes += r->used(); + if (r->is_humongous()) { + ShenandoahHeapRegion* start = r->humongous_start_region(); + HeapWord* obj_addr = start->bottom(); + oop obj = cast_to_oop(obj_addr); + size_t word_size = obj->size(); + HeapWord* end_addr = obj_addr + word_size; + if (end_addr <= r->end()) { + tally_young_waste += (r->end() - end_addr) * HeapWordSize; + } + } + } + } + if (verify_young && + ((young_regions != tally_young_regions) || (young_bytes != tally_young_bytes) || (young_waste != tally_young_waste))) { + return false; + } else if (verify_old && + ((old_regions != tally_old_regions) || (old_bytes != tally_old_bytes) || (old_waste != tally_old_waste))) { + return false; + } else { + return true; + } +} + ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { if (!mode()->is_generational()) { return global_generation(); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeap.hpp b/src/hotspot/share/gc/shenandoah/shenandoahHeap.hpp index 105835e5728..368ae2a1ab3 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeap.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeap.hpp @@ -205,6 +205,9 @@ class ShenandoahHeap : public CollectedHeap { void prepare_for_verify() override; void verify(VerifyOption vo) override; + bool verify_generation_usage(bool verify_old, size_t old_regions, size_t old_bytes, size_t old_waste, + bool verify_young, size_t young_regions, size_t young_bytes, size_t young_waste); + // WhiteBox testing support. bool supports_concurrent_gc_breakpoints() const override { return true; @@ -215,6 +218,14 @@ class ShenandoahHeap : public CollectedHeap { private: size_t _initial_size; size_t _minimum_size; + size_t _promotion_potential; + size_t _promotion_in_place_potential; + size_t _pad_for_promote_in_place; // bytes of filler + size_t _promotable_humongous_regions; + size_t _promotable_humongous_usage; + size_t _regular_regions_promoted_in_place; + size_t _regular_usage_promoted_in_place; + volatile size_t _soft_max_size; shenandoah_padding(0); volatile size_t _committed; @@ -284,6 +295,8 @@ class ShenandoahHeap : public CollectedHeap { void heap_region_iterate(ShenandoahHeapRegionClosure* blk) const; void parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const; + inline ShenandoahMmuTracker* const mmu_tracker() { return &_mmu_tracker; }; + // ---------- GC state machinery // // GC state describes the important parts of collector state, that may be @@ -332,31 +345,8 @@ class ShenandoahHeap : public CollectedHeap { ShenandoahSharedFlag _progress_last_gc; ShenandoahSharedFlag _concurrent_strong_root_in_progress; - // _alloc_supplement_reserve is a supplemental budget for new_memory allocations. During evacuation and update-references, - // mutator allocation requests are "authorized" iff young_gen->available() plus _alloc_supplement_reserve minus - // _young_evac_reserve is greater than request size. The values of _alloc_supplement_reserve and _young_evac_reserve - // are zero except during evacuation and update-reference phases of GC. Both of these values are established at - // the start of evacuation, and they remain constant throughout the duration of these two phases of GC. Since these - // two values are constant throughout each GC phases, we introduce a new service into ShenandoahGeneration. This service - // provides adjusted_available() based on an adjusted capacity. At the start of evacuation, we adjust young capacity by - // adding the amount to be borrowed from old-gen and subtracting the _young_evac_reserve, we adjust old capacity by - // subtracting the amount to be loaned to young-gen. - // - // We always use adjusted capacities to determine permission to allocate within young and to promote into old. Note - // that adjusted capacities equal traditional capacities except during evacuation and update refs. - // - // During evacuation, we assure that _old_evac_expended does not exceed _old_evac_reserve. - // - // At the end of update references, we perform the following bookkeeping activities: - // - // 1. Unadjust the capacity within young-gen and old-gen to undo the effects of borrowing memory from old-gen. Note that - // the entirety of the collection set is now available, so allocation capacity naturally increase at this time. - // 2. Clear (reset to zero) _alloc_supplement_reserve, _young_evac_reserve, _old_evac_reserve, and _promoted_reserve - // - // _young_evac_reserve and _old_evac_reserve are only non-zero during evacuation and update-references. - // - // Allocation of old GCLABs assures that _old_evac_expended + request-size < _old_evac_reserved. If the allocation - // is authorized, increment _old_evac_expended by request size. This allocation ignores old_gen->available(). + // TODO: Revisit the following comment. It may not accurately represent the true behavior when evacuations fail due to + // difficulty finding memory to hold evacuated objects. // // Note that the typical total expenditure on evacuation is less than the associated evacuation reserve because we generally // reserve ShenandoahEvacWaste (> 1.0) times the anticipated evacuation need. In the case that there is an excessive amount @@ -364,10 +354,15 @@ class ShenandoahHeap : public CollectedHeap { // effort. If this happens, the requesting thread blocks until some other thread manages to evacuate the offending object. // Only after "all" threads fail to evacuate an object do we consider the evacuation effort to have failed. - intptr_t _alloc_supplement_reserve; // Bytes reserved for young allocations during evac and update refs + // How many full-gc cycles have been completed? + volatile size_t _completed_fullgc_cycles; + size_t _promoted_reserve; // Bytes reserved within old-gen to hold the results of promotion volatile size_t _promoted_expended; // Bytes of old-gen memory expended on promotions + // Allocation of old GCLABs (aka PLABs) assures that _old_evac_expended + request-size < _old_evac_reserved. If the allocation + // is authorized, increment _old_evac_expended by request size. This allocation ignores old_gen->available(). + size_t _old_evac_reserve; // Bytes reserved within old-gen to hold evacuated objects from old-gen collection set volatile size_t _old_evac_expended; // Bytes of old-gen memory expended on old-gen evacuations @@ -397,7 +392,6 @@ class ShenandoahHeap : public CollectedHeap { void set_gc_state_mask(uint mask, bool value); public: - char gc_state() const; static address gc_state_addr(); @@ -415,6 +409,7 @@ class ShenandoahHeap : public CollectedHeap { void set_prepare_for_old_mark_in_progress(bool cond); void set_aging_cycle(bool cond); + inline bool is_stable() const; inline bool is_idle() const; inline bool has_evacuation_reserve_quantities() const; @@ -441,9 +436,31 @@ class ShenandoahHeap : public CollectedHeap { inline void set_previous_promotion(size_t promoted_bytes); inline size_t get_previous_promotion() const; + inline void clear_promotion_potential() { _promotion_potential = 0; }; + inline void set_promotion_potential(size_t val) { _promotion_potential = val; }; + inline size_t get_promotion_potential() { return _promotion_potential; }; + + inline void clear_promotion_in_place_potential() { _promotion_in_place_potential = 0; }; + inline void set_promotion_in_place_potential(size_t val) { _promotion_in_place_potential = val; }; + inline size_t get_promotion_in_place_potential() { return _promotion_in_place_potential; }; + + inline void set_pad_for_promote_in_place(size_t pad) { _pad_for_promote_in_place = pad; } + inline size_t get_pad_for_promote_in_place() { return _pad_for_promote_in_place; } + + inline void reserve_promotable_humongous_regions(size_t region_count) { _promotable_humongous_regions = region_count; } + inline void reserve_promotable_humongous_usage(size_t bytes) { _promotable_humongous_usage = bytes; } + inline void reserve_promotable_regular_regions(size_t region_count) { _regular_regions_promoted_in_place = region_count; } + inline void reserve_promotable_regular_usage(size_t used_bytes) { _regular_usage_promoted_in_place = used_bytes; } + + inline size_t get_promotable_humongous_regions() { return _promotable_humongous_regions; } + inline size_t get_promotable_humongous_usage() { return _promotable_humongous_usage; } + inline size_t get_regular_regions_promoted_in_place() { return _regular_regions_promoted_in_place; } + inline size_t get_regular_usage_promoted_in_place() { return _regular_usage_promoted_in_place; } + // Returns previous value inline size_t set_promoted_reserve(size_t new_val); inline size_t get_promoted_reserve() const; + inline void augment_promo_reserve(size_t increment); inline void reset_promoted_expended(); inline size_t expend_promoted(size_t increment); @@ -453,6 +470,7 @@ class ShenandoahHeap : public CollectedHeap { // Returns previous value inline size_t set_old_evac_reserve(size_t new_val); inline size_t get_old_evac_reserve() const; + inline void augment_old_evac_reserve(size_t increment); inline void reset_old_evac_expended(); inline size_t expend_old_evac(size_t increment); @@ -462,11 +480,6 @@ class ShenandoahHeap : public CollectedHeap { inline size_t set_young_evac_reserve(size_t new_val); inline size_t get_young_evac_reserve() const; - // Returns previous value. This is a signed value because it is the amount borrowed minus the amount reserved for - // young-gen evacuation. In case we cannot borrow much, this value might be negative. - inline intptr_t set_alloc_supplement_reserve(intptr_t new_val); - inline intptr_t get_alloc_supplement_reserve() const; - private: void manage_satb_barrier(bool active); @@ -517,11 +530,11 @@ class ShenandoahHeap : public CollectedHeap { void update_heap_references(bool concurrent); // Final update region states void update_heap_region_states(bool concurrent); - void rebuild_free_set(bool concurrent); void rendezvous_threads(); void recycle_trash(); public: + void rebuild_free_set(bool concurrent); void notify_gc_progress() { _progress_last_gc.set(); } void notify_gc_no_progress() { _progress_last_gc.unset(); } @@ -698,6 +711,10 @@ class ShenandoahHeap : public CollectedHeap { // ---------- Allocation support // private: + // How many bytes to transfer between old and young after we have finished recycling collection set regions? + size_t _old_regions_surplus; + size_t _old_regions_deficit; + HeapWord* allocate_memory_under_lock(ShenandoahAllocRequest& request, bool& in_new_region, bool is_promotion); inline HeapWord* allocate_from_gclab(Thread* thread, size_t size); @@ -731,6 +748,12 @@ class ShenandoahHeap : public CollectedHeap { void set_young_lab_region_flags(); + inline void set_old_region_surplus(size_t surplus) { _old_regions_surplus = surplus; }; + inline void set_old_region_deficit(size_t deficit) { _old_regions_deficit = deficit; }; + + inline size_t get_old_region_surplus() { return _old_regions_surplus; }; + inline size_t get_old_region_deficit() { return _old_regions_deficit; }; + // ---------- Marking support // private: @@ -830,7 +853,7 @@ class ShenandoahHeap : public CollectedHeap { void cancel_old_gc(); bool is_old_gc_active(); void coalesce_and_fill_old_regions(); - bool adjust_generation_sizes(); + void adjust_generation_sizes_for_next_cycle(size_t old_xfer_limit, size_t young_cset_regions, size_t old_cset_regions); // ---------- Helper functions // diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp b/src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp index d131d336e78..d6dccf01f9d 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp @@ -291,11 +291,12 @@ inline HeapWord* ShenandoahHeap::allocate_from_plab(Thread* thread, size_t size, PLAB* plab = ShenandoahThreadLocalData::plab(thread); HeapWord* obj; + if (plab == nullptr) { assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have PLAB: %s", thread->name()); // No PLABs in this thread, fallback to shared allocation return nullptr; - } else if (is_promotion && (plab->words_remaining() > 0) && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) { + } else if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) { return nullptr; } // if plab->word_size() <= 0, thread's plab not yet initialized for this pass, so allow_plab_promotions() is not trustworthy @@ -382,7 +383,6 @@ inline oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, Shenandoah break; } case OLD_GENERATION: { - PLAB* plab = ShenandoahThreadLocalData::plab(thread); if (plab != nullptr) { has_plab = true; @@ -510,6 +510,7 @@ inline oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, Shenandoah // For non-LAB allocations, we have no way to retract the allocation, and // have to explicitly overwrite the copy with the filler object. With that overwrite, // we have to keep the fwdptr initialized and pointing to our (stale) copy. + assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); fill_with_object(copy, size); shenandoah_assert_correct(nullptr, copy_val); // For non-LAB allocations, the object has already been registered @@ -753,6 +754,14 @@ inline size_t ShenandoahHeap::get_old_evac_reserve() const { return _old_evac_reserve; } +inline void ShenandoahHeap::augment_old_evac_reserve(size_t increment) { + _old_evac_reserve += increment; +} + +inline void ShenandoahHeap::augment_promo_reserve(size_t increment) { + _promoted_reserve += increment; +} + inline void ShenandoahHeap::reset_old_evac_expended() { Atomic::store(&_old_evac_expended, (size_t) 0); } @@ -791,16 +800,6 @@ inline size_t ShenandoahHeap::get_young_evac_reserve() const { return _young_evac_reserve; } -inline intptr_t ShenandoahHeap::set_alloc_supplement_reserve(intptr_t new_val) { - intptr_t orig = _alloc_supplement_reserve; - _alloc_supplement_reserve = new_val; - return orig; -} - -inline intptr_t ShenandoahHeap::get_alloc_supplement_reserve() const { - return _alloc_supplement_reserve; -} - template<class T> inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { marked_object_iterate(region, cl, region->top()); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.cpp b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.cpp index 299c2b1c593..941f4f1ec73 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.cpp @@ -29,6 +29,7 @@ #include "gc/shared/space.inline.hpp" #include "gc/shared/tlab_globals.hpp" #include "gc/shenandoah/shenandoahCardTable.hpp" +#include "gc/shenandoah/shenandoahFreeSet.hpp" #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" @@ -102,7 +103,7 @@ void ShenandoahHeapRegion::make_regular_allocation(ShenandoahAffiliation affilia case _empty_uncommitted: do_commit(); case _empty_committed: - set_affiliation(affiliation); + assert(this->affiliation() == affiliation, "Region affiliation should already be established"); set_state(_regular); case _regular: case _pinned: @@ -122,7 +123,13 @@ void ShenandoahHeapRegion::make_young_maybe() { case _cset: case _humongous_start: case _humongous_cont: - set_affiliation(YOUNG_GENERATION); + if (affiliation() != YOUNG_GENERATION) { + if (is_old()) { + ShenandoahHeap::heap()->old_generation()->decrement_affiliated_region_count(); + } + set_affiliation(YOUNG_GENERATION); + ShenandoahHeap::heap()->young_generation()->increment_affiliated_region_count(); + } return; case _pinned_cset: case _regular: @@ -175,6 +182,7 @@ void ShenandoahHeapRegion::make_humongous_start() { void ShenandoahHeapRegion::make_humongous_start_bypass(ShenandoahAffiliation affiliation) { shenandoah_assert_heaplocked(); assert (ShenandoahHeap::heap()->is_full_gc_in_progress(), "only for full GC"); + // Don't bother to account for affiliated regions during Full GC. We recompute totals at end. set_affiliation(affiliation); reset_age(); switch (_state) { @@ -207,6 +215,7 @@ void ShenandoahHeapRegion::make_humongous_cont_bypass(ShenandoahAffiliation affi shenandoah_assert_heaplocked(); assert (ShenandoahHeap::heap()->is_full_gc_in_progress(), "only for full GC"); set_affiliation(affiliation); + // Don't bother to account for affiliated regions during Full GC. We recompute totals at end. reset_age(); switch (_state) { case _empty_committed: @@ -469,6 +478,7 @@ bool ShenandoahHeapRegion::oop_fill_and_coalesce_without_cancel() { HeapWord* next_marked_obj = marking_context->get_next_marked_addr(obj_addr, t); assert(next_marked_obj <= t, "next marked object cannot exceed top"); size_t fill_size = next_marked_obj - obj_addr; + assert(fill_size >= ShenandoahHeap::min_fill_size(), "previously allocated objects known to be larger than min_size"); ShenandoahHeap::fill_with_object(obj_addr, fill_size); heap->card_scan()->coalesce_objects(obj_addr, fill_size); obj_addr = next_marked_obj; @@ -514,6 +524,7 @@ bool ShenandoahHeapRegion::oop_fill_and_coalesce() { HeapWord* next_marked_obj = marking_context->get_next_marked_addr(obj_addr, t); assert(next_marked_obj <= t, "next marked object cannot exceed top"); size_t fill_size = next_marked_obj - obj_addr; + assert(fill_size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); ShenandoahHeap::fill_with_object(obj_addr, fill_size); heap->card_scan()->coalesce_objects(obj_addr, fill_size); obj_addr = next_marked_obj; @@ -565,8 +576,8 @@ void ShenandoahHeapRegion::global_oop_iterate_objects_and_fill_dead(OopIterateCl HeapWord* next_marked_obj = marking_context->get_next_marked_addr(obj_addr, t); assert(next_marked_obj <= t, "next marked object cannot exceed top"); size_t fill_size = next_marked_obj - obj_addr; + assert(fill_size >= ShenandoahHeap::min_fill_size(), "previously allocated objects known to be larger than min_size"); ShenandoahHeap::fill_with_object(obj_addr, fill_size); - // coalesce_objects() unregisters all but first object subsumed within coalesced range. rem_set_scanner->coalesce_objects(obj_addr, fill_size); obj_addr = next_marked_obj; @@ -670,8 +681,8 @@ void ShenandoahHeapRegion::recycle() { set_update_watermark(bottom()); make_empty(); + ShenandoahHeap::heap()->generation_for(affiliation())->decrement_affiliated_region_count(); set_affiliation(FREE); - if (ZapUnusedHeapArea) { SpaceMangler::mangle_region(MemRegion(bottom(), end())); } @@ -957,40 +968,22 @@ void ShenandoahHeapRegion::set_affiliation(ShenandoahAffiliation new_affiliation } if (!heap->mode()->is_generational()) { + log_trace(gc)("Changing affiliation of region %zu from %s to %s", + index(), affiliation_name(), shenandoah_affiliation_name(new_affiliation)); heap->set_affiliation(this, new_affiliation); return; } - log_trace(gc)("Changing affiliation of region %zu from %s to %s", - index(), shenandoah_affiliation_name(region_affiliation), shenandoah_affiliation_name(new_affiliation)); - - if (region_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) { - heap->young_generation()->decrement_affiliated_region_count(); - } else if (region_affiliation == ShenandoahAffiliation::OLD_GENERATION) { - heap->old_generation()->decrement_affiliated_region_count(); - } - - size_t regions; switch (new_affiliation) { case FREE: assert(!has_live(), "Free region should not have live data"); break; case YOUNG_GENERATION: reset_age(); - regions = heap->young_generation()->increment_affiliated_region_count(); - // During Full GC, we allow temporary violation of this requirement. We enforce that this condition is - // restored upon completion of Full GC. - assert(heap->is_full_gc_in_progress() || - (regions * ShenandoahHeapRegion::region_size_bytes() <= heap->young_generation()->adjusted_capacity()), - "Number of young regions cannot exceed adjusted capacity"); break; case OLD_GENERATION: - regions = heap->old_generation()->increment_affiliated_region_count(); - // During Full GC, we allow temporary violation of this requirement. We enforce that this condition is - // restored upon completion of Full GC. - assert(heap->is_full_gc_in_progress() || - (regions * ShenandoahHeapRegion::region_size_bytes() <= heap->old_generation()->adjusted_capacity()), - "Number of old regions cannot exceed adjusted capacity"); + // TODO: should we reset_age() for OLD as well? Examine invocations of set_affiliation(). Some contexts redundantly + // invoke reset_age(). break; default: ShouldNotReachHere(); @@ -999,8 +992,92 @@ void ShenandoahHeapRegion::set_affiliation(ShenandoahAffiliation new_affiliation heap->set_affiliation(this, new_affiliation); } -// Returns number of regions promoted, or zero if we choose not to promote. -size_t ShenandoahHeapRegion::promote_humongous() { +// When we promote a region in place, we can continue to use the established marking context to guide subsequent remembered +// set scans of this region's content. The region will be coalesced and filled prior to the next old-gen marking effort. +// We identify the entirety of the region as DIRTY to force the next remembered set scan to identify the "interesting poitners" +// contained herein. +void ShenandoahHeapRegion::promote_in_place() { + ShenandoahHeap* heap = ShenandoahHeap::heap(); + ShenandoahMarkingContext* marking_context = heap->marking_context(); + HeapWord* tams = marking_context->top_at_mark_start(this); + assert(heap->active_generation()->is_mark_complete(), "sanity"); + assert(is_young(), "Only young regions can be promoted"); + assert(is_regular(), "Use different service to promote humongous regions"); + assert(age() >= InitialTenuringThreshold, "Only promote regions that are sufficiently aged"); + + ShenandoahOldGeneration* old_gen = heap->old_generation(); + ShenandoahYoungGeneration* young_gen = heap->young_generation(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + + { + ShenandoahHeapLocker locker(heap->lock()); + + HeapWord* update_watermark = get_update_watermark(); + + // Now that this region is affiliated with old, we can allow it to receive allocations, though it may not be in the + // is_collector_free range. + restore_top_before_promote(); + + size_t region_capacity = free(); + size_t region_used = used(); + + // The update_watermark was likely established while we had the artificially high value of top. Make it sane now. + assert(update_watermark >= top(), "original top cannot exceed preserved update_watermark"); + set_update_watermark(top()); + + // Unconditionally transfer one region from young to old to represent the newly promoted region. + // This expands old and shrinks new by the size of one region. Strictly, we do not "need" to expand old + // if there are already enough unaffiliated regions in old to account for this newly promoted region. + // However, if we do not transfer the capacities, we end up reducing the amount of memory that would have + // otherwise been available to hold old evacuations, because old available is max_capacity - used and now + // we would be trading a fully empty region for a partially used region. + + young_gen->decrease_used(region_used); + young_gen->decrement_affiliated_region_count(); + + // transfer_to_old() increases capacity of old and decreases capacity of young + heap->generation_sizer()->force_transfer_to_old(1); + set_affiliation(OLD_GENERATION); + + old_gen->increment_affiliated_region_count(); + old_gen->increase_used(region_used); + + // add_old_collector_free_region() increases promoted_reserve() if available space exceeds PLAB::min_size() + heap->free_set()->add_old_collector_free_region(this); + } + + assert(top() == tams, "Cannot promote regions in place if top has advanced beyond TAMS"); + + // Since this region may have served previously as OLD, it may hold obsolete object range info. + heap->card_scan()->reset_object_range(bottom(), end()); + heap->card_scan()->mark_range_as_dirty(bottom(), top() - bottom()); + + // TODO: use an existing coalesce-and-fill function rather than + // replicating the code here. + HeapWord* obj_addr = bottom(); + while (obj_addr < tams) { + oop obj = cast_to_oop(obj_addr); + if (marking_context->is_marked(obj)) { + assert(obj->klass() != NULL, "klass should not be NULL"); + // This thread is responsible for registering all objects in this region. No need for lock. + heap->card_scan()->register_object_without_lock(obj_addr); + obj_addr += obj->size(); + } else { + HeapWord* next_marked_obj = marking_context->get_next_marked_addr(obj_addr, tams); + assert(next_marked_obj <= tams, "next marked object cannot exceed tams"); + size_t fill_size = next_marked_obj - obj_addr; + assert(fill_size >= ShenandoahHeap::min_fill_size(), "previously allocated objects known to be larger than min_size"); + ShenandoahHeap::fill_with_object(obj_addr, fill_size); + heap->card_scan()->register_object_without_lock(obj_addr); + obj_addr = next_marked_obj; + } + } + + // We do not need to scan above TAMS because top equals tams + assert(obj_addr == tams, "Expect loop to terminate when obj_addr equals tams"); +} + +void ShenandoahHeapRegion::promote_humongous() { ShenandoahHeap* heap = ShenandoahHeap::heap(); ShenandoahMarkingContext* marking_context = heap->marking_context(); assert(heap->active_generation()->is_mark_complete(), "sanity"); @@ -1020,51 +1097,40 @@ size_t ShenandoahHeapRegion::promote_humongous() { // it becomes garbage. Better to not make this change until sizes of young-gen and old-gen are completely // adaptive, as leaving primitive arrays in young-gen might be perceived as an "astonishing result" by someone // has carefully analyzed the required sizes of an application's young-gen and old-gen. - - size_t spanned_regions = ShenandoahHeapRegion::required_regions(obj->size() * HeapWordSize); + size_t used_bytes = obj->size() * HeapWordSize; + size_t spanned_regions = ShenandoahHeapRegion::required_regions(used_bytes); + size_t humongous_waste = spanned_regions * ShenandoahHeapRegion::region_size_bytes() - obj->size() * HeapWordSize; size_t index_limit = index() + spanned_regions; - { // We need to grab the heap lock in order to avoid a race when changing the affiliations of spanned_regions from // young to old. ShenandoahHeapLocker locker(heap->lock()); - size_t available_old_regions = old_generation->adjusted_unaffiliated_regions(); - if (spanned_regions <= available_old_regions) { - log_debug(gc)("promoting humongous region " SIZE_FORMAT ", spanning " SIZE_FORMAT, index(), spanned_regions); - - // For this region and each humongous continuation region spanned by this humongous object, change - // affiliation to OLD_GENERATION and adjust the generation-use tallies. The remnant of memory - // in the last humongous region that is not spanned by obj is currently not used. - for (size_t i = index(); i < index_limit; i++) { - ShenandoahHeapRegion* r = heap->get_region(i); - log_debug(gc)("promoting humongous region " SIZE_FORMAT ", from " PTR_FORMAT " to " PTR_FORMAT, - r->index(), p2i(r->bottom()), p2i(r->top())); - // We mark the entire humongous object's range as dirty after loop terminates, so no need to dirty the range here - old_generation->increase_used(r->used()); - young_generation->decrease_used(r->used()); - r->set_affiliation(OLD_GENERATION); - } - ShenandoahHeapRegion* tail = heap->get_region(index_limit - 1); - size_t waste = tail->free(); - if (waste != 0) { - old_generation->increase_humongous_waste(waste); - young_generation->decrease_humongous_waste(waste); - } - // Then fall through to finish the promotion after releasing the heap lock. - } else { - // There are not enough available old regions to promote this humongous region at this time, so defer promotion. - // TODO: Consider allowing the promotion now, with the expectation that we can resize and/or collect OLD - // momentarily to address the transient violation of budgets. Some problems that need to be addressed in order - // to allow transient violation of capacity budgets are: - // 1. Various size_t subtractions assume usage is less than capacity, and thus assume there will be no - // arithmetic underflow when we subtract usage from capacity. The results of such size_t subtractions - // would need to be guarded and special handling provided. - // 2. ShenandoahVerifier enforces that usage is less than capacity. If we are going to relax this constraint, - // we need to think about what conditions allow the constraint to be violated and document and implement the - // changes. - return 0; + // We promote humongous objects unconditionally, without checking for availability. We adjust + // usage totals, including humongous waste, after evacuation is done. + log_debug(gc)("promoting humongous region " SIZE_FORMAT ", spanning " SIZE_FORMAT, index(), spanned_regions); + + young_generation->decrease_used(used_bytes); + young_generation->decrease_humongous_waste(humongous_waste); + young_generation->decrease_affiliated_region_count(spanned_regions); + + // transfer_to_old() increases capacity of old and decreases capacity of young + heap->generation_sizer()->force_transfer_to_old(spanned_regions); + + // For this region and each humongous continuation region spanned by this humongous object, change + // affiliation to OLD_GENERATION and adjust the generation-use tallies. The remnant of memory + // in the last humongous region that is not spanned by obj is currently not used. + for (size_t i = index(); i < index_limit; i++) { + ShenandoahHeapRegion* r = heap->get_region(i); + log_debug(gc)("promoting humongous region " SIZE_FORMAT ", from " PTR_FORMAT " to " PTR_FORMAT, + r->index(), p2i(r->bottom()), p2i(r->top())); + // We mark the entire humongous object's range as dirty after loop terminates, so no need to dirty the range here + r->set_affiliation(OLD_GENERATION); } + + old_generation->increase_affiliated_region_count(spanned_regions); + old_generation->increase_used(used_bytes); + old_generation->increase_humongous_waste(humongous_waste); } // Since this region may have served previously as OLD, it may hold obsolete object range info. @@ -1082,7 +1148,6 @@ size_t ShenandoahHeapRegion::promote_humongous() { index(), p2i(bottom()), p2i(bottom() + obj->size())); heap->card_scan()->mark_range_as_dirty(bottom(), obj->size()); } - return index_limit - index(); } void ShenandoahHeapRegion::decrement_humongous_waste() const { diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.hpp b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.hpp index 269f0fd239b..306cff58508 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.hpp @@ -242,6 +242,8 @@ class ShenandoahHeapRegion { HeapWord* _new_top; double _empty_time; + HeapWord* _top_before_promoted; + // Seldom updated fields RegionState _state; HeapWord* _coalesce_and_fill_boundary; // for old regions not selected as collection set candidates. @@ -350,6 +352,11 @@ class ShenandoahHeapRegion { return _index; } + inline void save_top_before_promote(); + inline HeapWord* get_top_before_promote() const { return _top_before_promoted; } + inline void restore_top_before_promote(); + inline size_t garbage_before_padded_for_promote() const; + // Allocation (return nullptr if full) inline HeapWord* allocate_aligned(size_t word_size, ShenandoahAllocRequest &req, size_t alignment_in_words); @@ -429,6 +436,7 @@ class ShenandoahHeapRegion { size_t capacity() const { return byte_size(bottom(), end()); } size_t used() const { return byte_size(bottom(), top()); } + size_t used_before_promote() const { return byte_size(bottom(), get_top_before_promote()); } size_t free() const { return byte_size(top(), end()); } // Does this region contain this address? @@ -457,8 +465,9 @@ class ShenandoahHeapRegion { void decrement_age() { if (_age-- == 0) { _age = 0; } } void reset_age() { _age = 0; } - // Sets all remembered set cards to dirty. Returns the number of regions spanned by the associated humongous object. - size_t promote_humongous(); + // Register all objects. Set all remembered set cards to dirty. + void promote_humongous(); + void promote_in_place(); private: void decrement_humongous_waste() const; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.inline.hpp b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.inline.hpp index 4ef7f36ab1d..c5823b11ddd 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.inline.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahHeapRegion.inline.hpp @@ -82,6 +82,7 @@ HeapWord* ShenandoahHeapRegion::allocate_aligned(size_t size, ShenandoahAllocReq if (size >= req.min_size()) { // Even if req.min_size() is not a multiple of card size, we know that size is. if (pad_words > 0) { + assert(pad_words >= ShenandoahHeap::min_fill_size(), "pad_words expanded above to meet size constraint"); ShenandoahHeap::fill_with_object(orig_top, pad_words); ShenandoahHeap::heap()->card_scan()->register_object(orig_top); } @@ -190,6 +191,17 @@ inline size_t ShenandoahHeapRegion::garbage() const { return result; } +inline size_t ShenandoahHeapRegion::garbage_before_padded_for_promote() const { + size_t used_before_promote = byte_size(bottom(), get_top_before_promote()); + assert(get_top_before_promote() != nullptr, "top before promote should not equal null"); + assert(used_before_promote >= get_live_data_bytes(), + "Live Data must be a subset of used before promotion live: " SIZE_FORMAT " used: " SIZE_FORMAT, + get_live_data_bytes(), used_before_promote); + size_t result = used_before_promote - get_live_data_bytes(); + return result; + +} + inline HeapWord* ShenandoahHeapRegion::get_update_watermark() const { HeapWord* watermark = Atomic::load_acquire(&_update_watermark); assert(bottom() <= watermark && watermark <= top(), "within bounds"); @@ -240,4 +252,17 @@ inline bool ShenandoahHeapRegion::is_affiliated() const { return affiliation() != FREE; } +inline void ShenandoahHeapRegion::save_top_before_promote() { + _top_before_promoted = _top; +} + +inline void ShenandoahHeapRegion::restore_top_before_promote() { + _top = _top_before_promoted; +#ifdef ASSERT + _top_before_promoted = nullptr; +#endif + } + + + #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAPREGION_INLINE_HPP diff --git a/src/hotspot/share/gc/shenandoah/shenandoahInitLogger.cpp b/src/hotspot/share/gc/shenandoah/shenandoahInitLogger.cpp index e9268063a56..76cc19fd47d 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahInitLogger.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahInitLogger.cpp @@ -47,14 +47,14 @@ void ShenandoahInitLogger::print_heap() { log_info(gc, init)("Heuristics: %s", heap->global_generation()->heuristics()->name()); } else { log_info(gc, init)("Young Heuristics: %s", heap->young_generation()->heuristics()->name()); - log_info(gc, init)("Young Generation Initial Size: " SIZE_FORMAT "%s", + log_info(gc, init)("Young Generation Soft Size: " SIZE_FORMAT "%s", byte_size_in_proper_unit(heap->young_generation()->soft_max_capacity()), proper_unit_for_byte_size(heap->young_generation()->soft_max_capacity())); log_info(gc, init)("Young Generation Max: " SIZE_FORMAT "%s", byte_size_in_proper_unit(heap->young_generation()->max_capacity()), proper_unit_for_byte_size(heap->young_generation()->max_capacity())); log_info(gc, init)("Old Heuristics: %s", heap->old_generation()->heuristics()->name()); - log_info(gc, init)("Old Generation Initial Size: " SIZE_FORMAT "%s", + log_info(gc, init)("Old Generation Soft Size: " SIZE_FORMAT "%s", byte_size_in_proper_unit(heap->old_generation()->soft_max_capacity()), proper_unit_for_byte_size(heap->old_generation()->soft_max_capacity())); log_info(gc, init)("Old Generation Max: " SIZE_FORMAT "%s", diff --git a/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.cpp b/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.cpp index b9443f12923..a7688679f29 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.cpp @@ -32,7 +32,6 @@ #include "runtime/os.hpp" #include "runtime/task.hpp" - class ShenandoahMmuTask : public PeriodicTask { ShenandoahMmuTracker* _mmu_tracker; public: @@ -53,66 +52,134 @@ class ThreadTimeAccumulator : public ThreadClosure { } }; -double ShenandoahMmuTracker::gc_thread_time_seconds() { +ShenandoahMmuTracker::ShenandoahMmuTracker() : + _most_recent_timestamp(0.0), + _most_recent_gc_time(0.0), + _most_recent_gcu(0.0), + _most_recent_mutator_time(0.0), + _most_recent_mu(0.0), + _most_recent_periodic_time_stamp(0.0), + _most_recent_periodic_gc_time(0.0), + _most_recent_periodic_mutator_time(0.0), + _mmu_periodic_task(new ShenandoahMmuTask(this)) { +} + +ShenandoahMmuTracker::~ShenandoahMmuTracker() { + _mmu_periodic_task->disenroll(); + delete _mmu_periodic_task; +} + +void ShenandoahMmuTracker::fetch_cpu_times(double &gc_time, double &mutator_time) { ThreadTimeAccumulator cl; // We include only the gc threads because those are the only threads // we are responsible for. ShenandoahHeap::heap()->gc_threads_do(&cl); - return double(cl.total_time) / NANOSECS_PER_SEC; -} + double most_recent_gc_thread_time = double(cl.total_time) / NANOSECS_PER_SEC; + gc_time = most_recent_gc_thread_time; -double ShenandoahMmuTracker::process_time_seconds() { double process_real_time(0.0), process_user_time(0.0), process_system_time(0.0); bool valid = os::getTimesSecs(&process_real_time, &process_user_time, &process_system_time); - if (valid) { - return process_user_time + process_system_time; + assert(valid, "don't know why this would not be valid"); + mutator_time =(process_user_time + process_system_time) - most_recent_gc_thread_time; +} + +void ShenandoahMmuTracker::update_utilization(ShenandoahGeneration* generation, size_t gcid, const char *msg) { + double current = os::elapsedTime(); + _most_recent_gcid = gcid; + _most_recent_is_full = false; + + if (gcid == 0) { + fetch_cpu_times(_most_recent_gc_time, _most_recent_mutator_time); + + _most_recent_timestamp = current; + } else { + double gc_cycle_period = current - _most_recent_timestamp; + _most_recent_timestamp = current; + + double gc_thread_time, mutator_thread_time; + fetch_cpu_times(gc_thread_time, mutator_thread_time); + double gc_time = gc_thread_time - _most_recent_gc_time; + _most_recent_gc_time = gc_thread_time; + _most_recent_gcu = gc_time / (_active_processors * gc_cycle_period); + double mutator_time = mutator_thread_time - _most_recent_mutator_time; + _most_recent_mutator_time = mutator_thread_time; + _most_recent_mu = mutator_time / (_active_processors * gc_cycle_period); + log_info(gc, ergo)("At end of %s: GCU: %.1f%%, MU: %.1f%% during period of %.3fs", + msg, _most_recent_gcu * 100, _most_recent_mu * 100, gc_cycle_period); } - return 0.0; } -ShenandoahMmuTracker::ShenandoahMmuTracker() : - _generational_reference_time_s(0.0), - _process_reference_time_s(0.0), - _collector_reference_time_s(0.0), - _mmu_periodic_task(new ShenandoahMmuTask(this)), - _mmu_average(10, ShenandoahAdaptiveDecayFactor) { +void ShenandoahMmuTracker::record_young(ShenandoahGeneration* generation, size_t gcid) { + update_utilization(generation, gcid, "Concurrent Young GC"); } -ShenandoahMmuTracker::~ShenandoahMmuTracker() { - _mmu_periodic_task->disenroll(); - delete _mmu_periodic_task; +void ShenandoahMmuTracker::record_bootstrap(ShenandoahGeneration* generation, size_t gcid, bool candidates_for_mixed) { + // Not likely that this will represent an "ideal" GCU, but doesn't hurt to try + update_utilization(generation, gcid, "Bootstrap Old GC"); +} + +void ShenandoahMmuTracker::record_old_marking_increment(ShenandoahGeneration* generation, size_t gcid, bool old_marking_done, + bool has_old_candidates) { + // No special processing for old marking + double now = os::elapsedTime(); + double duration = now - _most_recent_timestamp; + + double gc_time, mutator_time; + fetch_cpu_times(gc_time, mutator_time); + double gcu = (gc_time - _most_recent_gc_time) / duration; + double mu = (mutator_time - _most_recent_mutator_time) / duration; + log_info(gc, ergo)("At end of %s: GCU: %.1f%%, MU: %.1f%% for duration %.3fs (totals to be subsumed in next gc report)", + old_marking_done? "last OLD marking increment": "OLD marking increment", + gcu * 100, mu * 100, duration); +} + +void ShenandoahMmuTracker::record_mixed(ShenandoahGeneration* generation, size_t gcid, bool is_mixed_done) { + update_utilization(generation, gcid, "Mixed Concurrent GC"); +} + +void ShenandoahMmuTracker::record_degenerated(ShenandoahGeneration* generation, + size_t gcid, bool is_old_bootstrap, bool is_mixed_done) { + if ((gcid == _most_recent_gcid) && _most_recent_is_full) { + // Do nothing. This is a redundant recording for the full gc that just completed. + // TODO: avoid making the call to record_degenerated() in the case that this degenerated upgraded to full gc. + } else if (is_old_bootstrap) { + update_utilization(generation, gcid, "Degenerated Bootstrap Old GC"); + } else { + update_utilization(generation, gcid, "Degenerated Young GC"); + } } -void ShenandoahMmuTracker::record(ShenandoahGeneration* generation) { - shenandoah_assert_control_or_vm_thread(); - double collector_time_s = gc_thread_time_seconds(); - double elapsed_gc_time_s = collector_time_s - _generational_reference_time_s; - generation->add_collection_time(elapsed_gc_time_s); - _generational_reference_time_s = collector_time_s; +void ShenandoahMmuTracker::record_full(ShenandoahGeneration* generation, size_t gcid) { + update_utilization(generation, gcid, "Full GC"); + _most_recent_is_full = true; } void ShenandoahMmuTracker::report() { // This is only called by the periodic thread. - double process_time_s = process_time_seconds(); - double elapsed_process_time_s = process_time_s - _process_reference_time_s; - if (elapsed_process_time_s <= 0.01) { - // No cpu time for this interval? - return; - } + double current = os::elapsedTime(); + double time_delta = current - _most_recent_periodic_time_stamp; + _most_recent_periodic_time_stamp = current; - _process_reference_time_s = process_time_s; - double collector_time_s = gc_thread_time_seconds(); - double elapsed_collector_time_s = collector_time_s - _collector_reference_time_s; - _collector_reference_time_s = collector_time_s; - double minimum_mutator_utilization = ((elapsed_process_time_s - elapsed_collector_time_s) / elapsed_process_time_s) * 100; - _mmu_average.add(minimum_mutator_utilization); - log_info(gc)("Average MMU = %.3f", _mmu_average.davg()); + double gc_time, mutator_time; + fetch_cpu_times(gc_time, mutator_time); + + double gc_delta = gc_time - _most_recent_periodic_gc_time; + _most_recent_periodic_gc_time = gc_time; + + double mutator_delta = mutator_time - _most_recent_periodic_mutator_time; + _most_recent_periodic_mutator_time = mutator_time; + + double mu = mutator_delta / (_active_processors * time_delta); + double gcu = gc_delta / (_active_processors * time_delta); + log_info(gc)("Periodic Sample: GCU = %.3f%%, MU = %.3f%% during most recent %.1fs", gcu * 100, mu * 100, time_delta); } void ShenandoahMmuTracker::initialize() { - _process_reference_time_s = process_time_seconds(); - _generational_reference_time_s = gc_thread_time_seconds(); - _collector_reference_time_s = _generational_reference_time_s; + // initialize static data + _active_processors = os::initial_active_processor_count(); + + double _most_recent_periodic_time_stamp = os::elapsedTime(); + fetch_cpu_times(_most_recent_periodic_gc_time, _most_recent_periodic_mutator_time); _mmu_periodic_task->enroll(); } @@ -160,12 +227,12 @@ ShenandoahGenerationSizer::ShenandoahGenerationSizer(ShenandoahMmuTracker* mmu_t size_t ShenandoahGenerationSizer::calculate_min_young_regions(size_t heap_region_count) { size_t min_young_regions = (heap_region_count * ShenandoahMinYoungPercentage) / 100; - return MAX2(uint(min_young_regions), 1U); + return MAX2(min_young_regions, (size_t) 1U); } size_t ShenandoahGenerationSizer::calculate_max_young_regions(size_t heap_region_count) { size_t max_young_regions = (heap_region_count * ShenandoahMaxYoungPercentage) / 100; - return MAX2(uint(max_young_regions), 1U); + return MAX2(max_young_regions, (size_t) 1U); } void ShenandoahGenerationSizer::recalculate_min_max_young_length(size_t heap_region_count) { @@ -202,110 +269,71 @@ void ShenandoahGenerationSizer::heap_size_changed(size_t heap_size) { recalculate_min_max_young_length(heap_size / ShenandoahHeapRegion::region_size_bytes()); } -bool ShenandoahGenerationSizer::adjust_generation_sizes() const { - shenandoah_assert_generational(); - if (!use_adaptive_sizing()) { - return false; - } - - if (_mmu_tracker->average() >= double(GCTimeRatio)) { - return false; - } - +// Returns true iff transfer is successful +bool ShenandoahGenerationSizer::transfer_to_old(size_t regions) const { ShenandoahHeap* heap = ShenandoahHeap::heap(); - ShenandoahOldGeneration *old = heap->old_generation(); - ShenandoahYoungGeneration *young = heap->young_generation(); - ShenandoahGeneration *global = heap->global_generation(); - double old_time_s = old->reset_collection_time(); - double young_time_s = young->reset_collection_time(); - double global_time_s = global->reset_collection_time(); - - const double transfer_threshold = 3.0; - double delta = young_time_s - old_time_s; - - log_info(gc)("Thread Usr+Sys YOUNG = %.3f, OLD = %.3f, GLOBAL = %.3f", young_time_s, old_time_s, global_time_s); + ShenandoahGeneration* old_gen = heap->old_generation(); + ShenandoahGeneration* young_gen = heap->young_generation(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t bytes_to_transfer = regions * region_size_bytes; - if (abs(delta) <= transfer_threshold) { - log_info(gc, ergo)("Difference (%.3f) for thread utilization for each generation is under threshold (%.3f)", abs(delta), transfer_threshold); + if (young_gen->free_unaffiliated_regions() < regions) { + return false; + } else if (old_gen->max_capacity() + bytes_to_transfer > heap->max_size_for(old_gen)) { + return false; + } else if (young_gen->max_capacity() - bytes_to_transfer < heap->min_size_for(young_gen)) { return false; - } - - if (delta > 0) { - // young is busier than old, increase size of young to raise MMU - return transfer_capacity(old, young); } else { - // old is busier than young, increase size of old to raise MMU - return transfer_capacity(young, old); + young_gen->decrease_capacity(bytes_to_transfer); + old_gen->increase_capacity(bytes_to_transfer); + size_t new_size = old_gen->max_capacity(); + log_info(gc)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " SIZE_FORMAT "%s", + regions, young_gen->name(), old_gen->name(), + byte_size_in_proper_unit(new_size), proper_unit_for_byte_size(new_size)); + return true; } } -bool ShenandoahGenerationSizer::transfer_capacity(ShenandoahGeneration* target) const { - ShenandoahHeapLocker locker(ShenandoahHeap::heap()->lock()); - if (target->is_young()) { - return transfer_capacity(ShenandoahHeap::heap()->old_generation(), target); - } else { - assert(target->is_old(), "Expected old generation, if not young."); - return transfer_capacity(ShenandoahHeap::heap()->young_generation(), target); - } +// This is used when promoting humongous or highly utilized regular regions in place. It is not required in this situation +// that the transferred regions be unaffiliated. +void ShenandoahGenerationSizer::force_transfer_to_old(size_t regions) const { + ShenandoahHeap* heap = ShenandoahHeap::heap(); + ShenandoahGeneration* old_gen = heap->old_generation(); + ShenandoahGeneration* young_gen = heap->young_generation(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t bytes_to_transfer = regions * region_size_bytes; + + young_gen->decrease_capacity(bytes_to_transfer); + old_gen->increase_capacity(bytes_to_transfer); + size_t new_size = old_gen->max_capacity(); + log_info(gc)("Forcing transfer of " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " SIZE_FORMAT "%s", + regions, young_gen->name(), old_gen->name(), + byte_size_in_proper_unit(new_size), proper_unit_for_byte_size(new_size)); } -bool ShenandoahGenerationSizer::transfer_capacity(ShenandoahGeneration* from, ShenandoahGeneration* to) const { - shenandoah_assert_heaplocked_or_safepoint(); - size_t available_regions = from->free_unaffiliated_regions(); - if (available_regions <= 0) { - log_info(gc)("%s has no regions available for transfer to %s", from->name(), to->name()); - return false; - } - - size_t regions_to_transfer = MAX2(1u, uint(double(available_regions) * _resize_increment)); - if (from->is_young()) { - regions_to_transfer = adjust_transfer_from_young(from, regions_to_transfer); - } else { - regions_to_transfer = adjust_transfer_to_young(to, regions_to_transfer); - } +bool ShenandoahGenerationSizer::transfer_to_young(size_t regions) const { + ShenandoahHeap* heap = ShenandoahHeap::heap(); + ShenandoahGeneration* old_gen = heap->old_generation(); + ShenandoahGeneration* young_gen = heap->young_generation(); + size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); + size_t bytes_to_transfer = regions * region_size_bytes; - if (regions_to_transfer == 0) { - log_info(gc)("No capacity available to transfer from: %s (" SIZE_FORMAT "%s) to: %s (" SIZE_FORMAT "%s)", - from->name(), byte_size_in_proper_unit(from->max_capacity()), proper_unit_for_byte_size(from->max_capacity()), - to->name(), byte_size_in_proper_unit(to->max_capacity()), proper_unit_for_byte_size(to->max_capacity())); + if (old_gen->free_unaffiliated_regions() < regions) { return false; + } else if (young_gen->max_capacity() + bytes_to_transfer > heap->max_size_for(young_gen)) { + return false; + } else if (old_gen->max_capacity() - bytes_to_transfer < heap->min_size_for(old_gen)) { + return false; + } else { + old_gen->decrease_capacity(bytes_to_transfer); + young_gen->increase_capacity(bytes_to_transfer); + size_t new_size = young_gen->max_capacity(); + log_info(gc)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " SIZE_FORMAT "%s", + regions, old_gen->name(), young_gen->name(), + byte_size_in_proper_unit(new_size), proper_unit_for_byte_size(new_size)); + return true; } - - log_info(gc)("Transfer " SIZE_FORMAT " region(s) from %s to %s", regions_to_transfer, from->name(), to->name()); - from->decrease_capacity(regions_to_transfer * ShenandoahHeapRegion::region_size_bytes()); - to->increase_capacity(regions_to_transfer * ShenandoahHeapRegion::region_size_bytes()); - return true; -} - -size_t ShenandoahGenerationSizer::adjust_transfer_from_young(ShenandoahGeneration* from, size_t regions_to_transfer) const { - assert(from->is_young(), "Expect to transfer from young"); - size_t young_capacity_regions = from->max_capacity() / ShenandoahHeapRegion::region_size_bytes(); - size_t new_young_regions = young_capacity_regions - regions_to_transfer; - size_t minimum_young_regions = min_young_regions(); - // Check that we are not going to violate the minimum size constraint. - if (new_young_regions < minimum_young_regions) { - assert(minimum_young_regions <= young_capacity_regions, "Young is under minimum capacity."); - // If the transfer violates the minimum size and there is still some capacity to transfer, - // adjust the transfer to take the size to the minimum. Note that this may be zero. - regions_to_transfer = young_capacity_regions - minimum_young_regions; - } - return regions_to_transfer; -} - -size_t ShenandoahGenerationSizer::adjust_transfer_to_young(ShenandoahGeneration* to, size_t regions_to_transfer) const { - assert(to->is_young(), "Can only transfer between young and old."); - size_t young_capacity_regions = to->max_capacity() / ShenandoahHeapRegion::region_size_bytes(); - size_t new_young_regions = young_capacity_regions + regions_to_transfer; - size_t maximum_young_regions = max_young_regions(); - // Check that we are not going to violate the maximum size constraint. - if (new_young_regions > maximum_young_regions) { - assert(maximum_young_regions >= young_capacity_regions, "Young is over maximum capacity"); - // If the transfer violates the maximum size and there is still some capacity to transfer, - // adjust the transfer to take the size to the maximum. Note that this may be zero. - regions_to_transfer = maximum_young_regions - young_capacity_regions; - } - return regions_to_transfer; } size_t ShenandoahGenerationSizer::min_young_size() const { diff --git a/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.hpp b/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.hpp index 9d3c230a6cc..6ab7d180245 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahMmuTracker.hpp @@ -50,16 +50,31 @@ class ShenandoahMmuTask; * MMU. */ class ShenandoahMmuTracker { +private: + // These variables hold recent snapshots of cumulative quantities that are used for calculating + // CPU time consumed by GC and mutator threads during each GC cycle. + double _most_recent_timestamp; + double _most_recent_gc_time; + double _most_recent_gcu; + double _most_recent_mutator_time; + double _most_recent_mu; + + // These variables hold recent snapshots of cumulative quantities that are used for reporting + // periodic consumption of CPU time by GC and mutator threads. + double _most_recent_periodic_time_stamp; + double _most_recent_periodic_gc_time; + double _most_recent_periodic_mutator_time; - double _generational_reference_time_s; - double _process_reference_time_s; - double _collector_reference_time_s; + size_t _most_recent_gcid; + uint _active_processors; + + bool _most_recent_is_full; ShenandoahMmuTask* _mmu_periodic_task; TruncatedSeq _mmu_average; - static double gc_thread_time_seconds(); - static double process_time_seconds(); + void update_utilization(ShenandoahGeneration* generation, size_t gcid, const char* msg); + static void fetch_cpu_times(double &gc_time, double &mutator_time); public: explicit ShenandoahMmuTracker(); @@ -68,22 +83,24 @@ class ShenandoahMmuTracker { // This enrolls the periodic task after everything is initialized. void initialize(); - // This is called at the start and end of a GC cycle. The GC thread times - // will be accumulated in this generation. Note that the bootstrap cycle - // for an old collection should be counted against the old generation. - // When the collector is idle, it still runs a regulator and a control. - // The times for these threads are attributed to the global generation. - void record(ShenandoahGeneration* generation); + // At completion of each GC cycle (not including interrupted cycles), we invoke one of the following to record the + // GC utilization during this cycle. Incremental efforts spent in an interrupted GC cycle will be accumulated into + // the CPU time reports for the subsequent completed [degenerated or full] GC cycle. + // + // We may redundantly record degen and full in the case that a degen upgrades to full. When this happens, we will invoke + // both record_full() and record_degenerated() with the same value of gcid. record_full() is called first and the log + // reports such a cycle as a FULL cycle. + void record_young(ShenandoahGeneration* generation, size_t gcid); + void record_bootstrap(ShenandoahGeneration* generation, size_t gcid, bool has_old_candidates); + void record_old_marking_increment(ShenandoahGeneration* generation, size_t gcid, bool old_marking_done, bool has_old_candidates); + void record_mixed(ShenandoahGeneration* generation, size_t gcid, bool is_mixed_done); + void record_full(ShenandoahGeneration* generation, size_t gcid); + void record_degenerated(ShenandoahGeneration* generation, size_t gcid, bool is_old_boostrap, bool is_mixed_done); // This is called by the periodic task timer. The interval is defined by // GCPauseIntervalMillis and defaults to 5 seconds. This method computes // the MMU over the elapsed interval and records it in a running average. - // This method also logs the average MMU. void report(); - - double average() { - return _mmu_average.davg(); - } }; class ShenandoahGenerationSizer { @@ -114,14 +131,6 @@ class ShenandoahGenerationSizer { // given the number of heap regions depending on the kind of sizing algorithm. void recalculate_min_max_young_length(size_t heap_region_count); - // These two methods are responsible for enforcing the minimum and maximum - // constraints for the size of the generations. - size_t adjust_transfer_from_young(ShenandoahGeneration* from, size_t regions_to_transfer) const; - size_t adjust_transfer_to_young(ShenandoahGeneration* to, size_t regions_to_transfer) const; - - // This will attempt to transfer capacity from one generation to the other. It - // returns true if a transfer is made, false otherwise. - bool transfer_capacity(ShenandoahGeneration* from, ShenandoahGeneration* to) const; public: explicit ShenandoahGenerationSizer(ShenandoahMmuTracker* mmu_tracker); @@ -145,19 +154,11 @@ class ShenandoahGenerationSizer { return _use_adaptive_sizing; } - // This is invoked at the end of a collection. This happens on a safepoint - // to avoid any races with allocators (and to avoid interfering with - // allocators by taking the heap lock). The amount of capacity to move - // from one generation to another is controlled by YoungGenerationSizeIncrement - // and defaults to 20% of the available capacity of the donor generation. - // The minimum and maximum sizes of the young generation are controlled by - // ShenandoahMinYoungPercentage and ShenandoahMaxYoungPercentage, respectively. - // The method returns true when an adjustment is made, false otherwise. - bool adjust_generation_sizes() const; - - // This may be invoked by a heuristic (from regulator thread) before it - // decides to run a collection. - bool transfer_capacity(ShenandoahGeneration* target) const; + bool transfer_to_young(size_t regions) const; + bool transfer_to_old(size_t regions) const; + + // force transfer is used when we promote humongous objects. May violate min/max limits on generation sizes + void force_transfer_to_old(size_t regions) const; }; #endif //SHARE_GC_SHENANDOAH_SHENANDOAHMMUTRACKER_HPP diff --git a/src/hotspot/share/gc/shenandoah/shenandoahOldGC.cpp b/src/hotspot/share/gc/shenandoah/shenandoahOldGC.cpp index 94e29209bac..da56f2cb683 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahOldGC.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahOldGC.cpp @@ -30,6 +30,7 @@ #include "gc/shenandoah/shenandoahOldGC.hpp" #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" #include "gc/shenandoah/shenandoahGeneration.hpp" +#include "gc/shenandoah/shenandoahOldGeneration.hpp" #include "gc/shenandoah/shenandoahYoungGeneration.hpp" #include "prims/jvmtiTagMap.hpp" #include "utilities/events.hpp" @@ -146,5 +147,48 @@ bool ShenandoahOldGC::collect(GCCause::Cause cause) { // collection. vmop_entry_final_roots(); + // We do not rebuild_free following increments of old marking because memory has not been reclaimed.. However, we may + // need to transfer memory to OLD in order to efficiently support the mixed evacuations that might immediately follow. + size_t allocation_runway = heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(0); + heap->adjust_generation_sizes_for_next_cycle(allocation_runway, 0, 0); + + bool success; + size_t region_xfer; + const char* region_destination; + ShenandoahYoungGeneration* young_gen = heap->young_generation(); + ShenandoahGeneration* old_gen = heap->old_generation(); + { + ShenandoahHeapLocker locker(heap->lock()); + + size_t old_region_surplus = heap->get_old_region_surplus(); + size_t old_region_deficit = heap->get_old_region_deficit(); + if (old_region_surplus) { + success = heap->generation_sizer()->transfer_to_young(old_region_surplus); + region_destination = "young"; + region_xfer = old_region_surplus; + } else if (old_region_deficit) { + success = heap->generation_sizer()->transfer_to_old(old_region_deficit); + region_destination = "old"; + region_xfer = old_region_deficit; + if (!success) { + ((ShenandoahOldHeuristics *) old_gen->heuristics())->trigger_cannot_expand(); + } + } else { + region_destination = "none"; + region_xfer = 0; + success = true; + } + heap->set_old_region_surplus(0); + heap->set_old_region_deficit(0); + } + + // Report outside the heap lock + size_t young_available = young_gen->available(); + size_t old_available = old_gen->available(); + log_info(gc, ergo)("After old marking finished, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: " + SIZE_FORMAT "%s, young_available: " SIZE_FORMAT "%s", + success? "successfully transferred": "failed to transfer", region_xfer, region_destination, + byte_size_in_proper_unit(old_available), proper_unit_for_byte_size(old_available), + byte_size_in_proper_unit(young_available), proper_unit_for_byte_size(young_available)); return true; } diff --git a/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.cpp b/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.cpp index 331499816f8..f8aaf325cbd 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.cpp @@ -174,12 +174,30 @@ class ShenandoahConcurrentCoalesceAndFillTask : public WorkerTask { ShenandoahOldGeneration::ShenandoahOldGeneration(uint max_queues, size_t max_capacity, size_t soft_max_capacity) : ShenandoahGeneration(OLD, max_queues, max_capacity, soft_max_capacity), _coalesce_and_fill_region_array(NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, ShenandoahHeap::heap()->num_regions(), mtGC)), - _state(IDLE) + _state(IDLE), + _growth_before_compaction(INITIAL_GROWTH_BEFORE_COMPACTION) { + _live_bytes_after_last_mark = ShenandoahHeap::heap()->capacity() * INITIAL_LIVE_FRACTION / FRACTIONAL_DENOMINATOR; // Always clear references for old generation ref_processor()->set_soft_reference_policy(true); } +size_t ShenandoahOldGeneration::get_live_bytes_after_last_mark() const { + return _live_bytes_after_last_mark; +} + +void ShenandoahOldGeneration::set_live_bytes_after_last_mark(size_t bytes) { + _live_bytes_after_last_mark = bytes; + if (_growth_before_compaction > MINIMUM_GROWTH_BEFORE_COMPACTION) { + _growth_before_compaction /= 2; + } +} + +size_t ShenandoahOldGeneration::usage_trigger_threshold() const { + size_t result = _live_bytes_after_last_mark + (_live_bytes_after_last_mark * _growth_before_compaction) / FRACTIONAL_DENOMINATOR; + return result; +} + bool ShenandoahOldGeneration::contains(ShenandoahHeapRegion* region) const { // TODO: Should this be region->is_old() instead? return !region->is_young(); @@ -255,6 +273,7 @@ bool ShenandoahOldGeneration::coalesce_and_fill() { uint nworkers = workers->active_workers(); log_debug(gc)("Starting (or resuming) coalesce-and-fill of old heap regions"); + // This code will see the same set of regions to fill on each resumption as it did // on the initial run. That's okay because each region keeps track of its own coalesce // and fill state. Regions that were filled on a prior attempt will not try to fill again. @@ -322,7 +341,11 @@ void ShenandoahOldGeneration::prepare_regions_and_collection_set(bool concurrent ShenandoahPhaseTimings::final_rebuild_freeset : ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); ShenandoahHeapLocker locker(heap->lock()); - heap->free_set()->rebuild(); + size_t cset_young_regions, cset_old_regions; + heap->free_set()->prepare_to_rebuild(cset_young_regions, cset_old_regions); + // This is just old-gen completion. No future budgeting required here. The only reason to rebuild the freeset here + // is in case there was any immediate old garbage identified. + heap->free_set()->rebuild(cset_young_regions, cset_old_regions); } } @@ -405,7 +428,8 @@ void ShenandoahOldGeneration::validate_transition(State new_state) { case IDLE: // GC cancellation can send us back to IDLE from any state. assert(!heap->is_concurrent_old_mark_in_progress(), "Cannot become idle during old mark."); - assert(_old_heuristics->unprocessed_old_collection_candidates() == 0, "Cannot become idle with collection candidates"); + assert(!heap->mode()->is_generational() || + (_old_heuristics->unprocessed_old_collection_candidates() == 0), "Cannot become idle with collection candidates"); assert(!heap->is_prepare_for_old_mark_in_progress(), "Cannot become idle while making old generation parseable."); assert(heap->young_generation()->old_gen_task_queues() == nullptr, "Cannot become idle when setup for bootstrapping."); break; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.hpp b/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.hpp index 0e3fb429c26..1ac7e22c41a 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahOldGeneration.hpp @@ -90,19 +90,45 @@ class ShenandoahOldGeneration : public ShenandoahGeneration { private: State _state; + static const size_t FRACTIONAL_DENOMINATOR = 64536; + + // During initialization of the JVM, we search for the correct old-gen size by initally performing old-gen + // collection when old-gen usage is 50% more (INITIAL_GROWTH_BEFORE_COMPACTION) than the initial old-gen size + // estimate (3.125% of heap). The next old-gen trigger occurs when old-gen grows 25% larger than its live + // memory at the end of the first old-gen collection. Then we trigger again when old-gen growns 12.5% + // more than its live memory at the end of the previous old-gen collection. Thereafter, we trigger each time + // old-gen grows more than 12.5% following the end of its previous old-gen collection. + static const size_t INITIAL_GROWTH_BEFORE_COMPACTION = FRACTIONAL_DENOMINATOR / 2; // 50.0% + static const size_t MINIMUM_GROWTH_BEFORE_COMPACTION = FRACTIONAL_DENOMINATOR / 8; // 12.5% + + // INITIAL_LIVE_FRACTION represents the initial guess of how large old-gen should be. We estimate that old-gen + // needs to consume 3.125% of the total heap size. And we "pretend" that we start out with this amount of live + // old-gen memory. The first old-collection trigger will occur when old-gen occupies 50% more than this initial + // approximation of the old-gen memory requirement, in other words when old-gen usage is 150% of 3.125%, which + // is 4.6875% of the total heap size. + static const uint16_t INITIAL_LIVE_FRACTION = FRACTIONAL_DENOMINATOR / 32; // 3.125% + size_t _live_bytes_after_last_mark; + size_t _growth_before_compaction; // How much growth in usage before we trigger old collection, per 65_536 + + void validate_transition(State new_state) NOT_DEBUG_RETURN; + public: State state() const { return _state; } + void transition_to(State new_state); + + size_t get_live_bytes_after_last_mark() const; + void set_live_bytes_after_last_mark(size_t new_live); + + size_t usage_trigger_threshold() const; + bool can_start_gc() { return _state == IDLE || _state == WAITING_FOR_FILL; } static const char* state_name(State state); - - void transition_to(State new_state); - void validate_transition(State new_state) NOT_DEBUG_RETURN; }; diff --git a/src/hotspot/share/gc/shenandoah/shenandoahRegulatorThread.cpp b/src/hotspot/share/gc/shenandoah/shenandoahRegulatorThread.cpp index 7664b75d1d6..7d21fb27972 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahRegulatorThread.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahRegulatorThread.cpp @@ -140,7 +140,8 @@ void ShenandoahRegulatorThread::regulator_sleep() { } bool ShenandoahRegulatorThread::start_old_cycle() { - return _old_heuristics->should_start_gc() && _control_thread->request_concurrent_gc(OLD); + return !ShenandoahHeap::heap()->doing_mixed_evacuations() && !ShenandoahHeap::heap()->collection_set()->has_old_regions() && + _old_heuristics->should_start_gc() && _control_thread->request_concurrent_gc(OLD); } bool ShenandoahRegulatorThread::start_young_cycle() { diff --git a/src/hotspot/share/gc/shenandoah/shenandoahVerifier.cpp b/src/hotspot/share/gc/shenandoah/shenandoahVerifier.cpp index dae7ab21b2d..61ea96999d0 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahVerifier.cpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahVerifier.cpp @@ -403,24 +403,32 @@ class ShenandoahGenerationStatsClosure : public ShenandoahHeapRegionClosure { byte_size_in_proper_unit(stats.used()), proper_unit_for_byte_size(stats.used())); } - static void validate_usage(const char* label, ShenandoahGeneration* generation, ShenandoahCalculateRegionStatsClosure& stats) { + static void validate_usage(const bool adjust_for_padding, + const char* label, ShenandoahGeneration* generation, ShenandoahCalculateRegionStatsClosure& stats) { + ShenandoahHeap* heap = ShenandoahHeap::heap(); size_t generation_used = generation->used(); + size_t generation_used_regions = generation->used_regions(); + if (adjust_for_padding && (generation->is_young() || generation->is_global())) { + size_t pad = ShenandoahHeap::heap()->get_pad_for_promote_in_place(); + generation_used += pad; + } + guarantee(stats.used() == generation_used, "%s: generation (%s) used size must be consistent: generation-used: " SIZE_FORMAT "%s, regions-used: " SIZE_FORMAT "%s", label, generation->name(), byte_size_in_proper_unit(generation_used), proper_unit_for_byte_size(generation_used), byte_size_in_proper_unit(stats.used()), proper_unit_for_byte_size(stats.used())); - guarantee(stats.regions() == generation->used_regions(), + guarantee(stats.regions() == generation_used_regions, "%s: generation (%s) used regions (" SIZE_FORMAT ") must equal regions that are in use (" SIZE_FORMAT ")", label, generation->name(), generation->used_regions(), stats.regions()); -// This check is disabled because of known issues with this feature. We expect this code to be updated by 05/2023. -// size_t capacity = generation->adjusted_capacity(); -// guarantee(stats.span() <= capacity, -// "%s: generation (%s) size spanned by regions (" SIZE_FORMAT ") must not exceed current capacity (" SIZE_FORMAT "%s)", -// label, generation->name(), stats.regions(), -// byte_size_in_proper_unit(capacity), proper_unit_for_byte_size(capacity)); + size_t generation_capacity = generation->max_capacity(); + size_t humongous_regions_promoted = 0; + guarantee(stats.span() <= generation_capacity, + "%s: generation (%s) size spanned by regions (" SIZE_FORMAT ") must not exceed current capacity (" SIZE_FORMAT "%s)", + label, generation->name(), stats.regions(), + byte_size_in_proper_unit(generation_capacity), proper_unit_for_byte_size(generation_capacity)); size_t humongous_waste = generation->get_humongous_waste(); guarantee(stats.waste() == humongous_waste, @@ -743,6 +751,7 @@ void ShenandoahVerifier::verify_at_safepoint(const char* label, VerifyForwarded forwarded, VerifyMarked marked, VerifyCollectionSet cset, VerifyLiveness liveness, VerifyRegions regions, + VerifySize sizeness, VerifyGCState gcstate) { guarantee(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "only when nothing else happens"); guarantee(ShenandoahVerify, "only when enabled, and bitmap is initialized in ShenandoahHeap::initialize"); @@ -795,6 +804,7 @@ void ShenandoahVerifier::verify_at_safepoint(const char* label, if (enabled) { char actual = _heap->gc_state(); + // Old generation marking is allowed in all states. if (!VerifyThreadGCState::verify_gc_state(actual, expected)) { fatal("%s: Global gc-state: expected %d, actual %d", label, expected, actual); } @@ -813,13 +823,20 @@ void ShenandoahVerifier::verify_at_safepoint(const char* label, ShenandoahCalculateRegionStatsClosure cl; _heap->heap_region_iterate(&cl); - size_t heap_used = _heap->used(); - guarantee(cl.used() == heap_used, - "%s: heap used size must be consistent: heap-used = " SIZE_FORMAT "%s, regions-used = " SIZE_FORMAT "%s", - label, - byte_size_in_proper_unit(heap_used), proper_unit_for_byte_size(heap_used), - byte_size_in_proper_unit(cl.used()), proper_unit_for_byte_size(cl.used())); - + size_t heap_used; + if (_heap->mode()->is_generational() && (sizeness == _verify_size_adjusted_for_padding)) { + // Prior to evacuation, regular regions that are to be evacuated in place are padded to prevent further allocations + heap_used = _heap->used() + _heap->get_pad_for_promote_in_place(); + } else if (sizeness != _verify_size_disable) { + heap_used = _heap->used(); + } + if (sizeness != _verify_size_disable) { + guarantee(cl.used() == heap_used, + "%s: heap used size must be consistent: heap-used = " SIZE_FORMAT "%s, regions-used = " SIZE_FORMAT "%s", + label, + byte_size_in_proper_unit(heap_used), proper_unit_for_byte_size(heap_used), + byte_size_in_proper_unit(cl.used()), proper_unit_for_byte_size(cl.used())); + } size_t heap_committed = _heap->committed(); guarantee(cl.committed() == heap_committed, "%s: heap committed size must be consistent: heap-committed = " SIZE_FORMAT "%s, regions-committed = " SIZE_FORMAT "%s", @@ -868,10 +885,16 @@ void ShenandoahVerifier::verify_at_safepoint(const char* label, ShenandoahGenerationStatsClosure::log_usage(_heap->young_generation(), cl.young); ShenandoahGenerationStatsClosure::log_usage(_heap->global_generation(), cl.global); } - - ShenandoahGenerationStatsClosure::validate_usage(label, _heap->old_generation(), cl.old); - ShenandoahGenerationStatsClosure::validate_usage(label, _heap->young_generation(), cl.young); - ShenandoahGenerationStatsClosure::validate_usage(label, _heap->global_generation(), cl.global); + if (sizeness == _verify_size_adjusted_for_padding) { + ShenandoahGenerationStatsClosure::validate_usage(false, label, _heap->old_generation(), cl.old); + ShenandoahGenerationStatsClosure::validate_usage(true, label, _heap->young_generation(), cl.young); + ShenandoahGenerationStatsClosure::validate_usage(true, label, _heap->global_generation(), cl.global); + } else if (sizeness == _verify_size_exact) { + ShenandoahGenerationStatsClosure::validate_usage(false, label, _heap->old_generation(), cl.old); + ShenandoahGenerationStatsClosure::validate_usage(false, label, _heap->young_generation(), cl.young); + ShenandoahGenerationStatsClosure::validate_usage(false, label, _heap->global_generation(), cl.global); + } + // else: sizeness must equal _verify_size_disable } log_debug(gc)("Safepoint verification finished remembered set verification"); @@ -983,19 +1006,22 @@ void ShenandoahVerifier::verify_generic(VerifyOption vo) { _verify_cset_disable, // cset may be inconsistent _verify_liveness_disable, // no reliable liveness data _verify_regions_disable, // no reliable region data + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_disable // no data about gcstate ); } void ShenandoahVerifier::verify_before_concmark() { verify_at_safepoint( - "Before Mark", - _verify_remembered_before_marking, // verify read-only remembered set from bottom() to top() + "Before Mark", + _verify_remembered_before_marking, + // verify read-only remembered set from bottom() to top() _verify_forwarded_none, // UR should have fixed up _verify_marked_disable, // do not verify marked: lots ot time wasted checking dead allocations _verify_cset_none, // UR should have fixed this _verify_liveness_disable, // no reliable liveness data _verify_regions_notrash, // no trash regions + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_stable // there are no forwarded objects ); } @@ -1005,10 +1031,12 @@ void ShenandoahVerifier::verify_after_concmark() { "After Mark", _verify_remembered_disable, // do not verify remembered set _verify_forwarded_none, // no forwarded references - _verify_marked_complete_except_references, // bitmaps as precise as we can get, except dangling j.l.r.Refs + _verify_marked_complete_except_references, + // bitmaps as precise as we can get, except dangling j.l.r.Refs _verify_cset_none, // no references to cset anymore _verify_liveness_complete, // liveness data must be complete here _verify_regions_disable, // trash regions not yet recycled + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_stable_weakroots // heap is still stable, weakroots are in progress ); } @@ -1022,6 +1050,8 @@ void ShenandoahVerifier::verify_before_evacuation() { _verify_cset_disable, // non-forwarded references to cset expected _verify_liveness_complete, // liveness data must be complete here _verify_regions_disable, // trash regions not yet recycled + _verify_size_adjusted_for_padding, // expect generation and heap sizes to match after adjustments + // for promote in place padding _verify_gcstate_stable_weakroots // heap is still stable, weakroots are in progress ); } @@ -1035,6 +1065,7 @@ void ShenandoahVerifier::verify_during_evacuation() { _verify_cset_disable, // some cset references are not forwarded yet _verify_liveness_disable, // liveness data might be already stale after pre-evacs _verify_regions_disable, // trash regions not yet recycled + _verify_size_disable, // we don't know how much of promote-in-place work has been completed _verify_gcstate_evacuation // evacuation is in progress ); } @@ -1048,6 +1079,7 @@ void ShenandoahVerifier::verify_after_evacuation() { _verify_cset_forwarded, // all cset refs are fully forwarded _verify_liveness_disable, // no reliable liveness data anymore _verify_regions_notrash, // trash regions have been recycled already + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_forwarded // evacuation produced some forwarded objects ); } @@ -1056,15 +1088,17 @@ void ShenandoahVerifier::verify_before_updaterefs() { verify_at_safepoint( "Before Updating References", _verify_remembered_before_updating_references, // verify read-write remembered set - _verify_forwarded_allow, // forwarded references allowed - _verify_marked_complete, // bitmaps might be stale, but alloc-after-mark should be well - _verify_cset_forwarded, // all cset refs are fully forwarded - _verify_liveness_disable, // no reliable liveness data anymore - _verify_regions_notrash, // trash regions have been recycled already - _verify_gcstate_updating // evacuation should have produced some forwarded objects + _verify_forwarded_allow, // forwarded references allowed + _verify_marked_complete, // bitmaps might be stale, but alloc-after-mark should be well + _verify_cset_forwarded, // all cset refs are fully forwarded + _verify_liveness_disable, // no reliable liveness data anymore + _verify_regions_notrash, // trash regions have been recycled already + _verify_size_exact, // expect generation and heap sizes to match exactly + _verify_gcstate_updating // evacuation should have produced some forwarded objects ); } +// We have not yet cleanup (reclaimed) the collection set void ShenandoahVerifier::verify_after_updaterefs() { verify_at_safepoint( "After Updating References", @@ -1074,6 +1108,7 @@ void ShenandoahVerifier::verify_after_updaterefs() { _verify_cset_none, // no cset references, all updated _verify_liveness_disable, // no reliable liveness data anymore _verify_regions_nocset, // no cset regions, trash regions have appeared + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_stable // update refs had cleaned up forwarded objects ); } @@ -1087,6 +1122,7 @@ void ShenandoahVerifier::verify_after_degenerated() { _verify_cset_none, // no cset references _verify_liveness_disable, // no reliable liveness data anymore _verify_regions_notrash_nocset, // no trash, no cset + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_stable // degenerated refs had cleaned up forwarded objects ); } @@ -1100,6 +1136,7 @@ void ShenandoahVerifier::verify_before_fullgc() { _verify_cset_disable, // cset might be foobared _verify_liveness_disable, // no reliable liveness data anymore _verify_regions_disable, // no reliable region data here + _verify_size_disable, // if we degenerate during evacuation, usage not valid: padding and deferred accounting _verify_gcstate_disable // no reliable gcstate data ); } @@ -1113,6 +1150,7 @@ void ShenandoahVerifier::verify_after_fullgc() { _verify_cset_none, // no cset references _verify_liveness_disable, // no reliable liveness data anymore _verify_regions_notrash_nocset, // no trash, no cset + _verify_size_exact, // expect generation and heap sizes to match exactly _verify_gcstate_stable // full gc cleaned up everything ); } @@ -1314,7 +1352,7 @@ void ShenandoahVerifier::verify_rem_set_before_mark() { } // else, this humongous object is not marked so no need to verify its internal pointers if (!scanner->verify_registration(obj_addr, ctx)) { - ShenandoahAsserts::print_failure(ShenandoahAsserts::_safe_all, obj, obj_addr, nullptr, + ShenandoahAsserts::print_failure(ShenandoahAsserts::_safe_all, obj, nullptr, nullptr, "Verify init-mark remembered set violation", "object not properly registered", __FILE__, __LINE__); } } else if (!r->is_humongous()) { @@ -1330,7 +1368,7 @@ void ShenandoahVerifier::verify_rem_set_before_mark() { } // else, object's start is marked dirty and obj is not an objArray, so any interesting pointers are covered if (!scanner->verify_registration(obj_addr, ctx)) { - ShenandoahAsserts::print_failure(ShenandoahAsserts::_safe_all, obj, obj_addr, nullptr, + ShenandoahAsserts::print_failure(ShenandoahAsserts::_safe_all, obj, nullptr, nullptr, "Verify init-mark remembered set violation", "object not properly registered", __FILE__, __LINE__); } obj_addr += obj->size(); diff --git a/src/hotspot/share/gc/shenandoah/shenandoahVerifier.hpp b/src/hotspot/share/gc/shenandoah/shenandoahVerifier.hpp index 284746be541..67b35644bf5 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoahVerifier.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoahVerifier.hpp @@ -141,6 +141,17 @@ class ShenandoahVerifier : public CHeapObj<mtGC> { _verify_regions_notrash_nocset } VerifyRegions; + typedef enum { + // Disable size verification + _verify_size_disable, + + // Enforce exact consistency + _verify_size_exact, + + // Expect promote-in-place adjustments: padding inserted to temporarily prevent further allocation in regular regions + _verify_size_adjusted_for_padding + } VerifySize; + typedef enum { // Disable gc-state verification _verify_gcstate_disable, @@ -189,6 +200,7 @@ class ShenandoahVerifier : public CHeapObj<mtGC> { VerifyCollectionSet cset, VerifyLiveness liveness, VerifyRegions regions, + VerifySize sizeness, VerifyGCState gcstate); public: diff --git a/src/hotspot/share/gc/shenandoah/shenandoah_globals.hpp b/src/hotspot/share/gc/shenandoah/shenandoah_globals.hpp index a7f3311b603..4d5d029f4f7 100644 --- a/src/hotspot/share/gc/shenandoah/shenandoah_globals.hpp +++ b/src/hotspot/share/gc/shenandoah/shenandoah_globals.hpp @@ -97,7 +97,7 @@ "collector accepts. In percents of heap region size.") \ range(0,100) \ \ - product(uintx, ShenandoahOldGarbageThreshold, 10, EXPERIMENTAL, \ + product(uintx, ShenandoahOldGarbageThreshold, 15, EXPERIMENTAL, \ "How much garbage an old region has to contain before it would " \ "be taken for collection.") \ range(0,100) \ @@ -128,13 +128,6 @@ "size.") \ range(0,100) \ \ - product(uintx, ShenandoahOldMinFreeThreshold, 5, EXPERIMENTAL, \ - "Percentage of free old generation heap memory below which most " \ - "heuristics trigger collection independent of other triggers. " \ - "Provides a safety margin for many heuristics. In percents of " \ - "(soft) max heap size.") \ - range(0,100) \ - \ product(uintx, ShenandoahAllocationThreshold, 0, EXPERIMENTAL, \ "How many new allocations should happen since the last GC cycle " \ "before some heuristics trigger the collection. In percents of " \ @@ -210,7 +203,7 @@ "Heuristics may trigger collections more frequently. Time is in " \ "milliseconds. Setting this to 0 disables the feature.") \ \ - product(uintx, ShenandoahGuaranteedYoungGCInterval, 5*60*1000, EXPERIMENTAL, \ + product(uintx, ShenandoahGuaranteedYoungGCInterval, 5*60*1000, EXPERIMENTAL, \ "Run a collection of the young generation at least this often. " \ "Heuristics may trigger collections more frequently. Time is in " \ "milliseconds. Setting this to 0 disables the feature.") \ @@ -300,17 +293,20 @@ "failures, which will trigger stop-the-world Full GC passes.") \ range(1.0,100.0) \ \ - product(double, ShenandoahGenerationalEvacWaste, 2.0, EXPERIMENTAL, \ - "For generational mode, how much waste evacuations produce " \ - "within the reserved space. Larger values make evacuations " \ - "more resilient against evacuation conflicts, at expense of " \ - "evacuating less on each GC cycle. Smaller values increase " \ - "the risk of evacuation failures, which will trigger " \ - "stop-the-world Full GC passes. The default value for " \ - "generational mode is 2.0. The reason for the higher default " \ - "value in generational mode is because generational mode " \ - "enforces the evacuation budget, triggering degenerated GC " \ - "which upgrades to full GC whenever the budget is exceeded.") \ + product(double, ShenandoahOldEvacWaste, 1.4, EXPERIMENTAL, \ + "How much waste evacuations produce within the reserved space. " \ + "Larger values make evacuations more resilient against " \ + "evacuation conflicts, at expense of evacuating less on each " \ + "GC cycle. Smaller values increase the risk of evacuation " \ + "failures, which will trigger stop-the-world Full GC passes.") \ + range(1.0,100.0) \ + \ + product(double, ShenandoahPromoEvacWaste, 1.2, EXPERIMENTAL, \ + "How much waste promotions produce within the reserved space. " \ + "Larger values make evacuations more resilient against " \ + "evacuation conflicts, at expense of promoting less on each " \ + "GC cycle. Smaller values increase the risk of evacuation " \ + "failures, which will trigger stop-the-world Full GC passes.") \ range(1.0,100.0) \ \ product(uintx, ShenandoahMaxEvacLABRatio, 0, EXPERIMENTAL, \ @@ -339,26 +335,16 @@ "reserve/waste is incorrect, at the risk that application " \ "runs out of memory too early.") \ \ - product(uintx, ShenandoahOldEvacReserve, 2, EXPERIMENTAL, \ - "How much of old-generation heap to reserve for old-generation " \ - "evacuations. Larger values allow GC to evacuate more live " \ - "old-generation objects on every cycle, while potentially " \ - "creating greater impact on the cadence at which the young- " \ - "generation allocation pool is replenished. During mixed " \ - "evacuations, the bound on amount of old-generation heap " \ - "regions included in the collecdtion set is the smaller " \ - "of the quantities specified by this parameter and the " \ - "size of ShenandoahEvacReserve as adjusted by the value of " \ - "ShenandoahOldEvacRatioPercent. In percents of total " \ - "old-generation heap size.") \ - range(1,100) \ - \ - product(uintx, ShenandoahOldEvacRatioPercent, 12, EXPERIMENTAL, \ + product(uintx, ShenandoahOldEvacRatioPercent, 75, EXPERIMENTAL, \ "The maximum proportion of evacuation from old-gen memory, as " \ - "a percent ratio. The default value 12 denotes that no more " \ - "than one eighth (12%) of the collection set evacuation " \ - "workload may be comprised of old-gen heap regions. A larger " \ - "value allows a smaller number of mixed evacuations to process " \ + "a percent ratio. The default value 75 denotes that no more " \ + "than 75% of the collection set evacuation " \ + "workload may be evacuate to old-gen heap regions. This limits " \ + "both the promotion of aged regions and the compaction of " \ + "existing old regions. A value of 75 denotes that the normal " \ + "young-gen evacuation is increased by up to four fold. " \ + "A larger value allows quicker promotion and allows" \ + "a smaller number of mixed evacuations to process " \ "the entire list of old-gen collection candidates at the cost " \ "of an increased disruption of the normal cadence of young-gen " \ "collections. A value of 100 allows a mixed evacuation to " \ @@ -378,7 +364,7 @@ "to be less than this.") \ range(0, 100) \ \ - product(uintx, ShenandoahMaxYoungPercentage, 80, EXPERIMENTAL, \ + product(uintx, ShenandoahMaxYoungPercentage, 100, EXPERIMENTAL, \ "The maximum percentage of the heap to use for the young " \ "generation. Heuristics will not adjust the young generation " \ "to be more than this.") \ @@ -431,10 +417,14 @@ "When running in passive mode, this can be toggled to measure " \ "either Degenerated GC or Full GC costs.") \ \ - product(uintx, ShenandoahFullGCThreshold, 3, EXPERIMENTAL, \ + product(uintx, ShenandoahFullGCThreshold, 64, EXPERIMENTAL, \ "How many back-to-back Degenerated GCs should happen before " \ "going to a Full GC.") \ \ + product(uintx, ShenandoahOOMGCRetries, 3, EXPERIMENTAL, \ + "How many GCs should happen before we throw OutOfMemoryException "\ + "for allocation request, including at least one Full GC.") \ + \ product(bool, ShenandoahImplicitGCInvokesConcurrent, false, EXPERIMENTAL, \ "Should internally-caused GC requests invoke concurrent cycles, " \ "should they do the stop-the-world (Degenerated / Full GC)? " \ @@ -518,20 +508,6 @@ "Fix references with load reference barrier. Disabling this " \ "might degrade performance.") \ \ - product(uintx, ShenandoahBorrowPercent, 30, EXPERIMENTAL, \ - "During evacuation and reference updating in generational " \ - "mode, new allocations are allowed to borrow from old-gen " \ - "memory up to ShenandoahBorrowPercent / 100 amount of the " \ - "young-generation content of the current collection set. " \ - "Any memory borrowed from old-gen during evacuation and " \ - "update-references phases of GC will be repaid from the " \ - "abundance of young-gen memory produced when the collection " \ - "set is recycled at the end of updating references. The " \ - "default value of 30 reserves 70% of the to-be-reclaimed " \ - "young collection set memory to be allocated during the " \ - "subsequent concurrent mark phase of GC.") \ - range(0, 100) \ - \ product(uintx, ShenandoahOldCompactionReserve, 8, EXPERIMENTAL, \ "During generational GC, prevent promotions from filling " \ "this number of heap regions. These regions are reserved " \ diff --git a/test/hotspot/jtreg/ProblemList.txt b/test/hotspot/jtreg/ProblemList.txt index 48495d2a1ea..14c04bfbd66 100644 --- a/test/hotspot/jtreg/ProblemList.txt +++ b/test/hotspot/jtreg/ProblemList.txt @@ -83,11 +83,6 @@ gc/stress/gclocker/TestGCLockerWithG1.java 8180622 generic-all gc/stress/TestJNIBlockFullGC/TestJNIBlockFullGC.java 8192647 generic-all gc/stress/TestStressG1Humongous.java 8286554 windows-x64 -gc/shenandoah/oom/TestThreadFailure.java 8306335 generic-all -gc/shenandoah/oom/TestClassLoaderLeak.java 8306336 generic-all -gc/stress/gclocker/TestGCLockerWithShenandoah.java#generational 8306341 generic-all -gc/TestAllocHumongousFragment.java#generational 8306342 generic-all - ############################################################################# # :hotspot_runtime